Current Allergy and Asthma Reports

, Volume 8, Issue 5, pp 451–459

Innate immune mechanism in allergic asthma

  • Carlos J. Suarez
  • Nathan J. Parker
  • Patricia W. Finn
Article

Abstract

Allergic asthma is a chronic inflammatory disorder of the airways characterized by eosinophilic inflammation, airway hyperresponsiveness, and mucus hypersecretion. Adaptive, antigen-dependent immunity is critical for asthma pathogenesis. Allergic asthma may involve adaptive and innate, antigen-independent immune responses. This review discusses the current evidence that associates innate immunity with allergic asthma pathogenesis. In particular, we focus on the role of innate immune cells (eg, bronchial epithelial cells, alveolar macrophages, and dendritic cells) and molecules (Toll-like and nucleotide-binding oligomerization domain-like receptors) in modifying allergic immune responses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Bellou A, Schaub B, Ting L, Finn PW: Toll receptors modulate allergic responses: interaction with dendritic cells, T cells and mast cells. Curr Opin Allergy Clin Immunol 2003, 3:487–494.PubMedCrossRefGoogle Scholar
  2. 2.
    Strachan DP: Hay fever, hygiene, and household size. BMJ 1989, 299:1259–1260.PubMedCrossRefGoogle Scholar
  3. 3.
    da Cunha SS, Pujades-Rodriguez M, Barreto ML, et al.: Ecological study of socio-economic indicators and prevalence of asthma in schoolchildren in urban Brazil. BMC Public Health 2007, 7:205.PubMedCrossRefGoogle Scholar
  4. 4.
    Perzanowski MS, Miller RL, Thorne PS, et al.: Endotoxin in inner-city homes: associations with wheeze and eczema in early childhood. J Allergy Clin Immunol 2006, 117:1082–1089.PubMedCrossRefGoogle Scholar
  5. 5.
    Ege MJ, Frei R, Bieli C, et al.: Not all farming environments protect against the development of asthma and wheeze in children. J Allergy Clin Immunol 2007, 119:1140–1147.PubMedCrossRefGoogle Scholar
  6. 6.
    Braun-Fahrlander C, Riedler J, Herz U, et al.: Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002, 347:869–877.PubMedCrossRefGoogle Scholar
  7. 7.
    Campo P, Kalra HK, Levin L, et al.: Influence of dog ownership and high endotoxin on wheezing and atopy during infancy. J Allergy Clin Immunol 2006, 118:1271–1278.PubMedCrossRefGoogle Scholar
  8. 8.
    Lordan JL, Bucchieri F, Richter A, et al.: Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol 2002, 169:407–408.PubMedGoogle Scholar
  9. 9.
    Wang J, Snider DP, Hewlett BR, et al.: Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood 2000, 95:2337–2345.PubMedGoogle Scholar
  10. 10.
    Booth BW, Adler KB, Bonner JC, et al.: Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha. Am J Respir Cell Mol Biol 2001, 25:739–743.PubMedGoogle Scholar
  11. 11.
    Soumelis V, Reche PA, Kanzler H, et al.: Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002, 3:673–680.PubMedCrossRefGoogle Scholar
  12. 12.
    Ying S, O’Connor B, Ratoff J, et al.: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005, 174:8183–8190.PubMedGoogle Scholar
  13. 13.
    Zhou B, Comeau MR, De Smedt T, et al.: Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 2005, 6:1047–1053.PubMedCrossRefGoogle Scholar
  14. 14.
    Al-Shami A, Spolski R, Kelly J, et al.: A role for TSLP in the development of inflammation in an asthma model. J Exp Med 2005, 202:829–839.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang YH, Ito T, Wang YH, et al.: Maintenance and polarization of human Th2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 2006, 24:827–838.PubMedCrossRefGoogle Scholar
  16. 16.
    Allakhverdi Z, Comeau MR, Jessup HK, et al.: Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 2007, 204:253–258.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnston SL: Innate immunity in the pathogenesis of virusinduced asthma exacerbations. Proc Am Thorac Soc 2007, 4:267–270.PubMedCrossRefGoogle Scholar
  18. 18.
    Thepen T, Van Rooijen N, Kraal G: Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 1989, 170:499–509.PubMedCrossRefGoogle Scholar
  19. 19.
    Holt PG, Oliver J, Bilyk N, et al.: Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 1993, 177:397–407.PubMedCrossRefGoogle Scholar
  20. 20.
    Schauble TL, Boom WH, Finegan CK, Rich EA: Characterization of suppressor function of human alveolar macrophages for T lymphocyte responses to phytohemagglutinin: cellular selectivity, reversibility, and early events in T cell activation. Am J Respir Cell Mol Biol 1993, 8:89–97.PubMedGoogle Scholar
  21. 21.
    Tang C, Inman MD, van Rooijen N, et al.: Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. J Immunol 2001, 166:1471–1481.PubMedGoogle Scholar
  22. 22.
    Careau E, Bissonnette EY: Adoptive transfer of alveolar macrophages abrogates bronchial hyperresponsiveness. Am J Respir Cell Mol Biol 2004, 31:22–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Careau E, Proulx LI, Pouliot P, et al.: Antigen sensitization modulates alveolar macrophage functions in an asthma model. Am J Physiol Lung Cell Mol Physiol 2006, 290:L871–L879.PubMedCrossRefGoogle Scholar
  24. 24.
    Fadok VA, Bratton DL, Konowal A, et al.: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101:890–898.PubMedCrossRefGoogle Scholar
  25. 25.
    Huynh ML, Malcolm KC, Kotaru C, et al.: Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med 2005, 172:972–979.PubMedCrossRefGoogle Scholar
  26. 26.
    Arestides RS, He H, Westlake RM, et al.: Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation. Eur J Immunol 2002, 32:2874–2880.PubMedCrossRefGoogle Scholar
  27. 27.
    Ito T, Wang YH, Duramad O, et al.: TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 2005, 202:1213–1223.PubMedCrossRefGoogle Scholar
  28. 28.
    van Rijt LS, Jung S, Kleinjan A, et al.: In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 2005, 201:981–991.PubMedCrossRefGoogle Scholar
  29. 29.
    Vermaelen K, Pauwels R: Accelerated airway dendritic cell maturation, trafficking, and elimination in a mouse model of asthma. Am J Respir Cell Mol Biol 2003, 29:405–409.PubMedCrossRefGoogle Scholar
  30. 30.
    Hopfenspirger MT, Agrawal DK: Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice. J Immunol 2002, 168:2516–2522.PubMedGoogle Scholar
  31. 31.
    Blumer N, Sel S, Virna S, et al.: Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007, 37:348–357.PubMedCrossRefGoogle Scholar
  32. 32.
    Willwerth BM, Schaub B, Tantisira KG, et al.: Prenatal, perinatal, and heritable influences on cord blood immune responses. Ann Allergy Asthma Immunol 2006, 96:445–453.PubMedCrossRefGoogle Scholar
  33. 33.
    Redecke V, Hacker H, Datta SK, et al.: Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004, 172:2739–2743.PubMedGoogle Scholar
  34. 34.
    Akdis CA, Kussebi F, Pulendran B, et al.: Inhibition of T helper 2-type responses, IgE production and eosinophilia by synthetic lipopeptides. Eur J Immunol 2003, 33:2717–2726.PubMedCrossRefGoogle Scholar
  35. 35.
    Velasco G, Campo M, Manrique OJ, et al.: Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell Mol Biol 2005, 32:218–224.PubMedCrossRefGoogle Scholar
  36. 36.
    Jeon SG, Oh SY, Park HK, et al.: Th2 and Th1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA. J Allergy Clin Immunol 2007, 120:803–812.PubMedCrossRefGoogle Scholar
  37. 37.
    Sel S, Wegmann M, Sel S, et al.: Immunomodulatory effects of viral TLR ligands on experimental asthma depend on the additive effects of IL-12 and IL-10. J Immunol 2007, 178:7805–7813.PubMedGoogle Scholar
  38. 38.
    Kulka M, Metcalfe DD: TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 2006, 43:1579–1586.PubMedCrossRefGoogle Scholar
  39. 39.
    Bradding P, Walls AF, Holgate ST: The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 2006, 117:1277–1284.PubMedCrossRefGoogle Scholar
  40. 40.
    Eisenbarth SC, Piggott DA, Huleatt JW, et al.: Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002, 196:1645–1651.PubMedCrossRefGoogle Scholar
  41. 41.
    Shan X, Hu A, Veler H, et al.: Regulation of Toll-like receptor 4-induced proasthmatic changes in airway smooth muscle function by opposing actions of ERK1/2 and p38 MAPK signaling. Am J Physiol Lung Cell Mol Physiol 2006, 291:L324–L333.PubMedCrossRefGoogle Scholar
  42. 42.
    Bachar O, Adner M, Uddman R, Cardell LO: Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur J Immunol 2004, 34:1196–1207.PubMedCrossRefGoogle Scholar
  43. 43.
    Tulic MK, Wale JL, Holt PG, Sly PD: Modification of the inflammatory response to allergen challenge after exposure to bacterial lipopolysaccharide. Am J Respir Cell Mol Biol 2000, 22:604–612.PubMedGoogle Scholar
  44. 44.
    Watanabe J, Miyazaki Y, Zimmerman GA, et al.: Endotoxin contamination of ovalbumin suppresses murine immunologic responses and development of airway hyperreactivity. J Biol Chem 2003, 278:42361–42368.PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez D, Keller AC, Faquim-Mauro EL, et al.: Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 2003, 171:1001–1008.PubMedGoogle Scholar
  46. 46.
    Hollingsworth JW, Whitehead GS, Lin KL, et al.: TLR4 signaling attenuates ongoing allergic inflammation. J Immunol 2006, 176:5856–5862.PubMedGoogle Scholar
  47. 47.
    Piggott DA, Eisenbarth SC, Xu L, et al.: MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 2005, 115:459–467.PubMedGoogle Scholar
  48. 48.
    Moisan J, Camateros P, Thuraisingam T, et al.: TLR7 ligand prevents allergen-induced airway hyperresponsiveness and eosinophilia in allergic asthma by a MYD88-dependent and MK2-independent pathway. Am J Physiol Lung Cell Mol Physiol 2006, 290:L987–L995.PubMedCrossRefGoogle Scholar
  49. 49.
    Furset G, Floisand Y, Sioud M: Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 2008, 123:263–271.PubMedGoogle Scholar
  50. 50.
    Fallarino F, Grohmann U, You S, et al.: The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006, 176:6752–6761.PubMedGoogle Scholar
  51. 51.
    Lehner T: Special regulatory T cell review: the resurgence of the concept of contrasuppression in immunoregulation. Immunology 2008, 123:40–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Mellor AL, Chandler P, Baban B, et al.: Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 2004, 16:1391–1401.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu H, Liu L, Fletcher BS, Visner GA: Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006, 173:566–572.PubMedCrossRefGoogle Scholar
  54. 54.
    Yu G, Fang M, Gong M, et al.: Steady state dendritic cells with forced IDO expression induce skin allograft tolerance by upregulation of regulatory T cells. Transpl Immunol 2008, 18:208–219.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayashi T, Beck L, Rossetto C, et al.: Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004, 114:270–279.PubMedGoogle Scholar
  56. 56.
    Kitagaki K, Jain VV, Businga TR, et al.: Immunomodulatory effects of CpG oligodeoxynucleotides on established Th2 responses. Clin Diagn Lab Immunol 2002, 9:1260–1269.PubMedCrossRefGoogle Scholar
  57. 57.
    Fanucchi MV, Schelegle ES, Baker GL, et al.: Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys. Am J Respir Crit Care Med 2004, 170:1153–1157.PubMedCrossRefGoogle Scholar
  58. 58.
    Viala J, Chaput C, Boneca IG, et al.: Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004, 5:1166–1174.PubMedCrossRefGoogle Scholar
  59. 59.
    Opitz B, Forster S, Hocke AC, et al.: Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res 2005, 96:319–326.PubMedCrossRefGoogle Scholar
  60. 60.
    McGovern DP, Hysi P, Ahmad T, et al.: Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 2005, 14:1245–1250.PubMedCrossRefGoogle Scholar
  61. 61.
    Weidinger S, Klopp N, Rummler L, et al.: Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 2005, 116:177–184.PubMedCrossRefGoogle Scholar
  62. 62.
    Hysi P, Kabesch M, Moffatt MF, et al.: NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 2005, 14:935–941.PubMedCrossRefGoogle Scholar
  63. 63.
    Eder W, Klimecki W, Yu L, et al.: Association between exposure to farming, allergies and genetic variation in CARD4/NOD1. Allergy 2006, 61:1117–1124.PubMedCrossRefGoogle Scholar
  64. 64.
    Kobayashi KS, Chamaillard M, Ogura Y, et al.: NOD2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005, 307:731–734.PubMedCrossRefGoogle Scholar
  65. 65.
    Kabesch M, Peters W, Carr D, et al.: Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J Allergy Clin Immunol 2003, 111:813–817.PubMedCrossRefGoogle Scholar
  66. 66.
    Sutmuller RP, den Brok MH, Kramer M, et al.: Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 2006, 116:485–494.PubMedCrossRefGoogle Scholar
  67. 67.
    Caramalho I, Lopes-Carvalho T, Ostler D, et al.: Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003, 197:403–411.PubMedCrossRefGoogle Scholar
  68. 68.
    Marsland BJ, Nembrini C, Grun K, et al.: TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-theta signaling and promote autoimmune myocarditis. J Immunol 2007, 178:3466–3473.PubMedGoogle Scholar
  69. 69.
    Imanishi T, Hara H, Suzuki S, et al.: Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 2007, 178:6715–6719.PubMedGoogle Scholar
  70. 70.
    Crellin NK, Garcia RV, Hadisfar O, et al.: Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 2005, 175:8051–8059.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carlos J. Suarez
  • Nathan J. Parker
  • Patricia W. Finn
    • 1
  1. 1.Division of Pulmonary and Critical CareUniversity of California, San DiegoLa JollaUSA

Personalised recommendations