Genetic origins of hyper-IgE syndrome

  • Yoshiyuki MinegishiEmail author
  • Hajime Karasuyama


Hyper-IgE syndrome (HIES) is a complex primary immunodeficiency characterized by high serum IgE, chronic eczematoid dermatitis, and recurrent extracellular bacterial infections. Two types of HIES have been reported: type 1 and type 2. Type 1 HIES displays abnormalities in multiple systems, including the skeletal, dental, and immune systems, whereas type 2 shows abnormalities confined to the immune system. We recently identified hypomorphic mutations in the signal transducer and activator of transcription 3 (STAT3) gene in type 1 HIES and a null mutation in the tyrosine kinase 2 (Tyk2) gene, accompanied by susceptibility to intracellular bacteria in type 2 HIES. Analyses of cytokine responses in both types of HIES revealed that severe defects in the signal transduction for multiple cytokines, including interleukin-6 and interleukin-23, are leading to impaired T-helper type 17 function. These findings suggest that HIES is caused by the defects in multiple cytokine signals and that the susceptibility to various infections in HIES is associated with the T-helper type 17 defect.


Atopic Dermatitis Autosomal Recessive Autosomal Dominant Hypomorphic Mutation Dental Abnormality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Recommended Reading

  1. 1.
    Minegishi Y, Karasuyama H: Hyperimmunoglobulin E syndrome and tyrosine kinase 2 deficiency. Curr Opin Allergy Clin Immunol 2007, 7:506–509.PubMedCrossRefGoogle Scholar
  2. 2.
    Grimbacher B, Holland SM, Puck JM: Hyper-IgE syndromes. Immunol Rev 2005, 203:244–250.PubMedCrossRefGoogle Scholar
  3. 3.
    Grimbacher B, Holland SM, Gallin JI, et al.: Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med 1999, 340:692–702.PubMedCrossRefGoogle Scholar
  4. 4.
    Freeman AF, Kleiner DE, Nadiminti H, et al.: Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol 2007, 119:1234–1240.PubMedCrossRefGoogle Scholar
  5. 5.
    Renner ED, Puck JM, Holland SM, et al.: Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr 2004, 144:93–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Ihle JN: Cytokine receptor signalling. Nature 1995, 377:591–594.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu KD, Gaffen SL, Goldsmith MA: JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 1998, 10:271–278.PubMedCrossRefGoogle Scholar
  8. 8.
    O’shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002, 109(Suppl):S121–S131.PubMedCrossRefGoogle Scholar
  9. 9.
    Muller M, Briscoe J, Laxton C, et al.: The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and-gamma signal transduction. Nature 1993, 366:129–135.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodig SJ, Meraz MA, White JM, et al.: Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998, 93:373–383.PubMedCrossRefGoogle Scholar
  11. 11.
    Neubauer H, Cumano A, Muller M, et al.: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998, 93:397–409.PubMedCrossRefGoogle Scholar
  12. 12.
    Parganas E, Wang D, Stravopodis D, et al.: Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998, 93:385–395.PubMedCrossRefGoogle Scholar
  13. 13.
    Nosaka T, van Deursen JM, Tripp RA, et al.: Defective lymphoid development in mice lacking Jak3. Science 1995, 270:800–802.PubMedCrossRefGoogle Scholar
  14. 14.
    Park SY, Saijo K, Takahashi T, et al.: Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995, 3:771–782.PubMedCrossRefGoogle Scholar
  15. 15.
    Macchi P, Villa A, Giliani S, et al.: Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995, 377:65–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Russell SM, Tayebi N, Nakajima H, et al.: Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995, 270:797–800.PubMedCrossRefGoogle Scholar
  17. 17.
    Firmbach-Kraft I, Byers M, Shows T, et al.: Tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 1990, 5:1329–1336.PubMedGoogle Scholar
  18. 18.
    Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992, 70:313–322.PubMedCrossRefGoogle Scholar
  19. 19.
    Karaghiosoff M, Neubauer H, Lassnig C, et al.: Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 2000, 13:549–560.PubMedCrossRefGoogle Scholar
  20. 20.
    Shimoda K, Kato K, Aoki K, et al.: Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 2000, 13:561–571.PubMedCrossRefGoogle Scholar
  21. 21.
    Bacon CM, McVicar DW, Ortaldo JR, et al.: Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. J Exp Med 1995, 181:399–404.PubMedCrossRefGoogle Scholar
  22. 22.
    Stahl N, Boulton TG, Farruggella T, et al.: Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994, 263:92–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Minegishi Y, Coustan-Smith E, Wang YH, et al.: Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 1998, 187:71–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Minegishi Y, Rohrer J, Coustan-Smith E, et al.: An essential role for BLNK in human B cell development. Science 1999, 286:1954–1957.PubMedCrossRefGoogle Scholar
  25. 25.
    Conley ME, Rohrer J, Rapalus L, et al.: Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev 2000, 178:75–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Akira S, Nishio Y, Inoue M, et al.: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 1994, 77:63–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhong Z, Wen Z, Darnell JE Jr: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994, 264:95–98.PubMedCrossRefGoogle Scholar
  28. 28.
    Wegenka UM, Buschmann J, Lutticken C, et al.: Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 1993, 13:276–288.PubMedGoogle Scholar
  29. 29.
    Lutticken C, Wegenka UM, Yuan J, et al.: Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 1994, 263:89–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakajima K, Yamanaka Y, Nakae K, et al.: A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996, 15:3651–3658.PubMedGoogle Scholar
  31. 31.
    Williams L, Bradley L, Smith A, Foxwell B: Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 2004, 172:567–576.PubMedGoogle Scholar
  32. 32.
    Minami M, Inoue M, Wei S, et al.: STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A 1996, 93:3963–3966.PubMedCrossRefGoogle Scholar
  33. 33.
    Takeda K, Noguchi K, Shi W, et al.: Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 1997, 94:3801–3804.PubMedCrossRefGoogle Scholar
  34. 34.
    Akira S: Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 2000, 19:2607–2611.PubMedCrossRefGoogle Scholar
  35. 35.
    Kasprzycka M, Marzec M, Liu X, et al.: Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A 2006, 103:9964–9969.PubMedCrossRefGoogle Scholar
  36. 36.
    Davis SD, Schaller J, Wedgwood RJ: Job’s syndrome. Recurrent, “cold,” staphylococcal abscesses. Lancet 1966, 1:1013–1015.PubMedCrossRefGoogle Scholar
  37. 37.
    Buckley RH, Wray BB, Belmaker EZ: Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 1972, 49:59–70.PubMedGoogle Scholar
  38. 38.
    Del Prete G, Tiri A, Maggi E, et al.: Defective in vitro production of gamma-interferon and tumor necrosis factor-alpha by circulating T cells from patients with the hyper-immunoglobulin E syndrome. J Clin Invest 1989, 84:1830–1835.PubMedCrossRefGoogle Scholar
  39. 39.
    Borges WG, Augustine NH, Hill HR: Defective interleukin-12/interferon-gamma pathway in patients with hyperimmunoglobulinemia E syndrome. J Pediatr 2000, 136:176–180.PubMedCrossRefGoogle Scholar
  40. 40.
    Chehimi J, Elder M, Greene J, et al.: Cytokine and chemokine dysregulation in hyper-IgE syndrome. Clin Immunol 2001, 100:49–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Wood PM, Fieschi C, Picard C, et al.: Inherited defects in the interferon-gamma receptor or interleukin-12 signalling pathways are not sufficient to cause allergic disease in children. Eur J Pediatr 2005, 164:741–747.PubMedCrossRefGoogle Scholar
  42. 42.
    Minegishi Y, Saito M, Morio T, et al.: Human tyrosine kinase 2 deficiency reveals its requisute roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006, 25:745–755.PubMedCrossRefGoogle Scholar
  43. 43.
    Casanova JL, Abel L: Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002, 20:581–620.PubMedCrossRefGoogle Scholar
  44. 44.
    Minegishi Y, Saito M, Tsuchiya S, et al.: Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 2007, 448:1058–1062.PubMedCrossRefGoogle Scholar
  45. 45.
    Grimbacher B, Schaffer AA, Holland SM, et al.: Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 1999, 65:735–744.PubMedCrossRefGoogle Scholar
  46. 46.
    Holland SM, DeLeo FR, Elloumi HZ, et al.: STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007, 357:1608–1619.PubMedCrossRefGoogle Scholar
  47. 47.
    Renner ED, Torgerson TR, Rylaarsdam S, et al.: STAT3 mutation in the original patient with Job’s syndrome. N Engl J Med 2007, 357:1667–1668.PubMedCrossRefGoogle Scholar
  48. 48.
    Dupuis S, Dargemont C, Fieschi C, et al.: Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 2001, 293:300–303.PubMedCrossRefGoogle Scholar
  49. 49.
    Itoh S, Udagawa N, Takahashi N, et al.: A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone 2006, 39:505–512.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang XO, Panopoulos AD, Nurieva R, et al.: STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007, 282:9358–9363.PubMedCrossRefGoogle Scholar
  51. 51.
    Toy D, Kugler D, Wolfson M, et al.: Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 2006, 177:36–39.PubMedGoogle Scholar
  52. 52.
    Aujla SJ, Chan YR, Zheng M, et al.: IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia. Nat Med 2008, 14:275–281.PubMedCrossRefGoogle Scholar
  53. 53.
    Zheng Y, Valdez PA, Danilenko DM, et al.: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008, 14:282–289.PubMedCrossRefGoogle Scholar
  54. 54.
    Kreymborg K, Etzensperger R, Dumoutier L, et al.: IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 2007, 179:8098–8104.PubMedGoogle Scholar
  55. 55.
    Wolk K, Kunz S, Witte E, et al.: IL-22 increases the innate immunity of tissues. Immunity 2004, 21:241–254.PubMedCrossRefGoogle Scholar
  56. 56.
    Milner JD, Brenchley JM, Laurence A, et al.: Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2008, 452:773–776.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Immune RegulationTokyo Medical and Dental University Graduate SchoolTokyoJapan

Personalised recommendations