Current Allergy and Asthma Reports

, Volume 8, Issue 4, pp 357–366 | Cite as

Airway wall remodeling in asthma: From the epithelial layer to the adventitia



Asthma is an episodic respiratory syndrome caused by several pathogenic processes. This recurrent syndrome is associated with an accelerated decline in lung function and increase in airway obstruction over time. The reduced lung function is a consequence of tissue restructuring of all the components of the airway wall: 1) epithelium metaplasia; 2) altered quantity, composition, and distribution of extracellular matrix components; 3) microvascular remodeling; and 4) increase of airway smooth muscle mass. How these structural changes affect lung functions is not entirely clear. Deeper understandings of the altered structure and related functional impairment are important for gaining insights into the mechanisms underlying asthma. This review describes the tissue remodeling observed in different compartments of the asthmatic airway wall, from the airway lumen to adventitia. The underlying mechanisms driving the remodeling processes are also briefly reviewed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Lange P, Parner J, Vestbo J, et al.: A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998, 339:1194–1200.PubMedCrossRefGoogle Scholar
  2. 2.
    McCormack FX, Whitsett JA: The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 2002, 109:707–712.PubMedGoogle Scholar
  3. 3.
    James AL, Paré PD, Hogg JC: The mechanics of airway narrowing in asthma. Am Rev Respir Dis 1989, 139:242–246.PubMedGoogle Scholar
  4. 4.
    Wagers S, Lundblad LK, Ekman M, et al.: The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? J Appl Physiol 2004, 96:2019–2027.PubMedCrossRefGoogle Scholar
  5. 5.
    Aikawa T, Shimura S, Sasaki H, et al.: Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 1992, 101:916–921.PubMedCrossRefGoogle Scholar
  6. 6.
    Benayoun L, Druilhe A, Dombret MC, et al.: Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 2003, 167:1360–1368.PubMedCrossRefGoogle Scholar
  7. 7.
    Hackett TL, Knight DA: The role of epithelial injury and repair in the origins of asthma. Curr Opin Allergy Clin Immunol 2007, 7:63–68.PubMedGoogle Scholar
  8. 8.
    Winton HL, Wan H, Cannell MB, et al.: Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br J Pharmacol 1998, 124:1048–1059.PubMedCrossRefGoogle Scholar
  9. 9.
    Hassim Z, Maronese SE, Kumar RK: Injury to murine airway epithelial cells by pollen enzymes. Thorax 1998, 53:368–371.PubMedGoogle Scholar
  10. 10.
    Page K, Hughes VS, Bennett GW, Wong HR: German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells. Allergy 2006, 61:988–995.PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al.: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006, 38:441–446.PubMedCrossRefGoogle Scholar
  12. 12.
    Warner SM, Knight DA: Airway modeling and remodeling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol 2008, 8:44–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Willis BC, Borok Z: TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007, 293:L525–534.PubMedCrossRefGoogle Scholar
  14. 14.
    Bossé Y, Rola-Pleszczynski M: Controversy surrounding the increased expression of TGFbeta1 in asthma. Respir Res 2007, 8:66.PubMedCrossRefGoogle Scholar
  15. 15.
    Willis BC, Liebler JM, Luby-Phelps K, et al.: Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005, 166:1321–1332.PubMedGoogle Scholar
  16. 16.
    Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG: The attenuated fibroblast sheath of the respiratory tract epithelial-mesenchymal trophic unit. Am J Respir Cell Mol Biol 1999, 21:655–657.PubMedGoogle Scholar
  17. 17.
    Brewster CE, Howarth PH, Djukanovic R, et al.: Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1990, 3:507–511.PubMedGoogle Scholar
  18. 18.
    Boulet LP, Laviolette M, Turcotte H, et al.: Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest 1997, 112:45–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Niimi A, Matsumoto H, Takemura M, et al.: Relationship of airway wall thickness to airway sensitivity and airway reactivity in asthma. Am J Respir Crit Care Med 2003, 168:983–988.PubMedCrossRefGoogle Scholar
  20. 20.
    Cokugras H, Akcakaya N, Seckin, et al.: Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax 2001, 56:25–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoshino M, Nakamura Y, Sim JJ: Expression of growth factors and remodelling of the airway wall in bronchial asthma. Thorax 1998, 53:21–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson JW, Li X: The measurement of reticular basement membrane and submucosal collagen in the asthmatic airway. Clin Exp Allergy 1997, 27:363–371.PubMedCrossRefGoogle Scholar
  23. 23.
    Minshall EM, Leung DY, Martin RJ, et al.: Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1997, 17:326–333.PubMedGoogle Scholar
  24. 24.
    Vignola AM, Chanez P, Chiappara G, et al.: Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med 1997, 156:591–599.PubMedGoogle Scholar
  25. 25.
    Dube J, Chakir J, Laviolette M, et al.: In vitro procollagen synthesis and proliferative phenotype of bronchial fibroblasts from normal and asthmatic subjects. Lab Invest 1998, 78:297–307.PubMedGoogle Scholar
  26. 26.
    Stewart AG: Emigration and immigration of mesenchymal cells: a multicultural airway wall. Eur Respir J 2004, 24:515–517.PubMedCrossRefGoogle Scholar
  27. 27.
    Torrego A, Hew M, Oates T, et al.: Expression and activation of TGF-beta isoforms in acute allergen-induced remodelling in asthma. Thorax 2007, 62:307–313.PubMedCrossRefGoogle Scholar
  28. 28.
    Salvato G: Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax 2001, 56:902–906.PubMedCrossRefGoogle Scholar
  29. 29.
    McDonald DM: Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 2001, 164:S39–S45.PubMedGoogle Scholar
  30. 30.
    Huber HL, Koessler KK: The pathology of bronchial asthma. Archs Intern Med 1922, 30:689.Google Scholar
  31. 31.
    Ebina M, Takahashi T, Chiba T, Motomiya M: Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis 1993, 148:720–726.PubMedGoogle Scholar
  32. 32.
    Woodruff PG, Dolganov GM, Ferrando RE, et al.: Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med 2004, 169:1001–1006.PubMedCrossRefGoogle Scholar
  33. 33.
    Heard BE, Hossain S: Hyperplasia of bronchial muscle in asthma. J Path 1973, 110:319–331.CrossRefGoogle Scholar
  34. 34.
    Begueret H, Berger P, Vernejoux JM, et al.: Inflammation of bronchial smooth muscle in allergic asthma. Thorax 2007, 62:8–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Brightling CE, Bradding P, Symon FA, et al.: Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002, 346:1699–1705.PubMedCrossRefGoogle Scholar
  36. 36.
    Bai TR, Cooper J, Koelmeyer T, et al.: The effect of age and duration of disease on airway structure in fatal asthma. Am J Respir Crit Care Med 2000, 162:663–669.PubMedGoogle Scholar
  37. 37.
    Paré PD, McParland BE, Seow CY: Structural basis for exaggerated airway narrowing. Can J Physiol Pharmacol 2007, 85:653–658.PubMedCrossRefGoogle Scholar
  38. 38.
    Bramley AM, Roberts CR, Schellenberg RR: Collagenase increases shortening of human bronchial smooth muscle in vitro. Am J Respir Crit Care Med 1995, 152:1513–1517.PubMedGoogle Scholar
  39. 39.
    Hirst SJ, Martin JG, Bonacci JV, et al.: Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol 2004, 114:S2–17.PubMedCrossRefGoogle Scholar
  40. 40.
    Naureckas ET, Ndukwu IM, Halayko AJ, et al.: Bronchoalveolar lavage fluid from asthmatic subjects is mitogenic for human airway smooth muscle. Am J Respir Crit Care Med 1999, 160:2062–2066.PubMedGoogle Scholar
  41. 41.
    Roth M, Johnson PR, Borger P, et al.: Dysfunctional interaction of C/EBPalpha and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N Engl J Med 2004, 351:560–574.PubMedCrossRefGoogle Scholar
  42. 42.
    Trian T, Benard G, Begueret H, et al.: Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 2007, 204:3173–3181.PubMedCrossRefGoogle Scholar
  43. 43.
    Ramos-Barbon D, Presley JF, Hamid QA, et al.: Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma. J Clin Invest 2005, 115:1580–1589.PubMedCrossRefGoogle Scholar
  44. 44.
    Joubert P, Hamid Q: Role of airway smooth muscle in airway remodeling. J Allergy Clin Immunol 2005, 116:713–716.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt M, Sun G, Stacey MA, et al.: Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003, 171:380–389.PubMedGoogle Scholar
  46. 46.
    Lambert RK, Wiggs BR, Kuwano K, et al.: Functional significance of increased airway smooth muscle in asthma and COPD. J Appl Physiol 1993, 74:2771–2781.PubMedCrossRefGoogle Scholar
  47. 47.
    Amrani Y, Panettieri RA Jr: Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma. Curr Opin Allergy Clin Immunol 2002, 2:39–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Amrani Y, Tliba O, Deshpande DA, et al.: Bronchial hyperresponsiveness: insights into new signaling molecules. Curr Opin Pharmacol 2004, 4:230–234.PubMedCrossRefGoogle Scholar
  49. 49.
    McParland BE, Tait RR, Paré PD, Seow CY: The role of airway smooth muscle during an attack of asthma simulated in vitro. Am J Respir Cell Mol Biol 2005, 33:500–504.PubMedCrossRefGoogle Scholar
  50. 50.
    Chitano P, Wang L, Murphy TM: Three paradigms of airway smooth muscle hyperresponsiveness in young guinea pigs. Can J Physiol Pharmacol 2007, 85:715–726.PubMedCrossRefGoogle Scholar
  51. 51.
    Gil FR, Lauzon AM: Smooth muscle molecular mechanics in airway hyperresponsiveness and asthma. Can J Physiol Pharmacol 2007, 85:133–140.PubMedCrossRefGoogle Scholar
  52. 52.
    Noble PB, Turner DJ, Mitchell HW: Relationship of airway narrowing, compliance, and cartilage in isolated bronchial segments. J Appl Physiol 2002, 92:1119–1124.PubMedGoogle Scholar
  53. 53.
    Carroll N, Elliot J, Morton A, James A: The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 1993, 147:405–410.PubMedGoogle Scholar
  54. 54.
    Haraguchi M, Shimura S, Shirato K: Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. Am J Respir Crit Care Med 1999, 159:1005–1013.PubMedGoogle Scholar
  55. 55.
    Wang L, Paré PD, Seow CY: Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle. J Appl Physiol 2000, 88:2246–2250.PubMedCrossRefGoogle Scholar
  56. 56.
    Mauad T, Silva LF, Santos MA, et al.: Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma. Am J Respir Crit Care Med 2004, 170:857–862.PubMedCrossRefGoogle Scholar
  57. 57.
    Goncharova EA, Billington CK, Irani C, et al.: Cyclic AMP-mobilizing agents and glucocorticoids modulate human smooth muscle cell migration. Am J Respir Cell Mol Biol 2003, 29:19–27.PubMedCrossRefGoogle Scholar
  58. 58.
    Goldsmith AM, Hershenson MB, Wolbert MP, Bentley JK: Regulation of airway smooth muscle alpha-actin expression by glucocorticoids. Am J Physiol Lung Cell Mol Physiol 2007, 292:L99–L106.PubMedCrossRefGoogle Scholar
  59. 59.
    Bergeron C, Hauber HP, Gotfried M, et al.: Evidence of remodeling in peripheral airways of patients with mild to moderate asthma: effect of hydrofluoroalkane-flunisolide. J Allergy Clin Immunol 2005, 116:983–989.PubMedCrossRefGoogle Scholar
  60. 60.
    Berry MA, Hargadon B, Shelley M, et al.: Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006, 354:697–708.PubMedCrossRefGoogle Scholar
  61. 61.
    Holgate S, Casale T, Wenzel S, et al.: The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 2005, 115:459–465.PubMedCrossRefGoogle Scholar
  62. 62.
    Henderson WR Jr, Chiang GK, Tien YT, Chi EY: Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med 2006, 173:718–728.PubMedCrossRefGoogle Scholar
  63. 63.
    McMillan SJ, Xanthou G, Lloyd CM: Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-ta antibody: effect on the Smad signaling pathway. J Immunol 2005, 174:5774–5780.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.James Hogg iCAPTURE Centre/St. Paul’s HospitalVancouverCanada

Personalised recommendations