Current Allergy and Asthma Reports

, Volume 7, Issue 4, pp 255–263 | Cite as

What’s new in blistering disorders?



From the characterization of new animal models for the study of disease pathogenesis, to the demonstration of new therapeutic modalities, many developments have revolutionized the field of autoimmune bullous diseases in the past several years. This review highlights many of the significant advances that have taken place in the diagnosis, pathogenesis, and treatment options for pemphigus, pemphigoid, epidermolysis bullosa acquisita, and immunoglobulin (Ig) A-mediated bullous disorders.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Lin MS, Mascaro JM Jr, Liu Z, et al.: The desmosome and hemidesmosome in cutaneous autoimmunity. Clin Exp Immunol 1997, 107(Suppl 1):9–15.PubMedGoogle Scholar
  2. 2.
    Keene DR, Marinkovich MP, Sakai LY: Immunodissection of the connective tissue matrix in human skin. Microsc Res Tech 1997, 38:394–406.PubMedCrossRefGoogle Scholar
  3. 3.
    Klatte DH, Kurpakus MA, Grelling KA, Jones JC: Immunochemical characterization of three components of the hemidesmosome and their expression in cultured epithelial cells. J Cell Biol 1989, 109(6 Pt 2):3377–3390.PubMedCrossRefGoogle Scholar
  4. 4.
    Marinkovich MP: The molecular genetics of basement membrane diseases. Arch Dermatol 1993, 129:1557–1565.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiche G: Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 1998, 111(Pt 17):2477–2486.PubMedGoogle Scholar
  6. 6.
    Giancotti FG, Ruoslahti E: Integrin signaling. Science 1999, 285:1028–1032.PubMedCrossRefGoogle Scholar
  7. 7.
    Masunaga T: Epidermal basement membrane: its molecular organization and blistering disorders. Connect Tissue Res 2006, 47:55–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Aumailley M, B. Gayraud, Structure and biological activity of the extracellular matrix. J Mol Med 1998, 76:253–265.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanley JR: Pemphigus. In Fitzpatrick’s Dermatology in General Medicine, edn 6. Edited by Freedberg IM. New York: McGraw-Hill; 1999:654–666.Google Scholar
  10. 10.
    Ishii K, Amagai M, Hall RP, et al.: Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirusexpressed recombinant desmogleins. J Immunol 1997, 159:2010–2017.PubMedGoogle Scholar
  11. 11.
    Diaz LA, Arteaga LA, Hilario-Vargas J, et al.: Antidesmoglein-1 antibodies in onchocerciasis, leishmaniasis and Chagas disease suggest a possible etiological link to Fogo selvagem. J Invest Dermatol 2004, 123:1045–1051.PubMedCrossRefGoogle Scholar
  12. 12.
    Anhalt GJ: Paraneoplastic pemphigus. Adv Dermatol 1997, 12:77–96; discussion 97.PubMedGoogle Scholar
  13. 13.
    Sison-Fonacier L, JC Bystryn: Heterogeneity of pemphigus vulgaris antigens. Arch Dermatol 1987, 123:1507–1510.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanakawa Y, Matsuyoshi N, Stanley JR: Expression of desmoglein 1 compensates for genetic loss of desmoglein 3 in keratinocyte adhesion. J Invest Dermatol 2002, 119:27–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Mahoney MG, Wang Z, Rothenberger K, et al.: Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J Clin Invest 1999, 103:461–468.PubMedGoogle Scholar
  16. 16.
    Kricheli D, David M, Frusic-Zlotkin M, et al.: The distribution of pemphigus vulgaris-IgG subclasses and their reactivity with desmoglein 3 and 1 in pemphigus patients and their first-degree relatives. Br J Dermatol 2000, 143:337–342.PubMedCrossRefGoogle Scholar
  17. 17.
    Anhalt GJ, et al.: Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N Engl J Med 1982, 306:1189–1196.PubMedCrossRefGoogle Scholar
  18. 18.
    Aoki-Ota M, Tsunoda K, Ota T, et al.: A mouse model of pemphigus vulgaris by adoptive transfer of naive splenocytes from desmoglein 3 knockout mice. Br J Dermatol 2004, 151:346–354.PubMedCrossRefGoogle Scholar
  19. 19.
    Muller R, Svoboda V, Wenzel E, et al.: IgG reactivity against non-conformational NH-terminal epitopes of the desmoglein 3 ectodomain relates to clinical activity and phenotype of pemphigus vulgaris. Exp Dermatol 2006, 15:606–614.PubMedCrossRefGoogle Scholar
  20. 20.
    Lanza A, Cirillo N, Femiano F, Gombos F: How does acantholysis occur in pemphigus vulgaris: a critical review. J Cutan Pathol 2006, 33:401–412.PubMedCrossRefGoogle Scholar
  21. 21.
    Bystryn JC, Grando SA: A novel explanation for acantholysis in pemphigus vulgaris: the basal cell shrinkage hypothesis. J Am Acad Dermatol 2006, 54:513–516.PubMedCrossRefGoogle Scholar
  22. 22.
    Frusic-Zlotkin M, Raichenberg D, Wang X, et al.: Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis-possible involvement of the EGF receptor. Autoimmunity 2006, 39:563–575.PubMedCrossRefGoogle Scholar
  23. 23.
    Bystryn JC: Adjuvant therapy of pemphigus. Arch Dermatol 1984, 120:941–951.PubMedCrossRefGoogle Scholar
  24. 24.
    Ratnam KV, Phay KL, Tan CK: Pemphigus therapy with oral prednisolone regimens: a 5-year study. Int J Dermatol 1990, 29:363–367.PubMedCrossRefGoogle Scholar
  25. 25.
    Dick SE, Werth VP: Pemphigus: a treatment update. Autoimmunity 2006, 39:591–599.PubMedCrossRefGoogle Scholar
  26. 26.
    Beissert S, Werfel T, Frieling U, et al.: A comparison of oral methylprednisolone plus azathioprine or mycophenolate mofetil for the treatment of pemphigus. Arch Dermatol 2006, 142:1447–1454.PubMedCrossRefGoogle Scholar
  27. 27.
    Cummins DL, Mimouni D, Anhalt GJ, Nousari CH: Oral cyclophosphamide for treatment of pemphigus vulgaris and foliaceus. J Am Acad Dermatol 2003, 49:276–280.PubMedCrossRefGoogle Scholar
  28. 28.
    Guillaume JC, Roujeau JC, Morel P, et al.: Controlled study of plasma exchange in pemphigus. Arch Dermatol 1988, 124:1659–1663.PubMedCrossRefGoogle Scholar
  29. 29.
    Sondergaard K, Carstens J, Jorgensen J, Zachariae H: The steroid-sparing effect of long-term plasmapheresis in pemphigus. Acta Derm Venereol 1995, 75:150–152.PubMedGoogle Scholar
  30. 30.
    Turner MS, Sutton D, Sauder DN: The use of plasmapheresis and immunosuppression in the treatment of pemphigus vulgaris. J Am Acad Dermatol 2000, 43:1058–1064.PubMedCrossRefGoogle Scholar
  31. 31.
    Bystryn JC, Jiao D: IVIg selectively and rapidly decreases circulating pathogenic autoantibodies in pemphigus vulgaris. Autoimmunity 2006, 39:601–607.PubMedCrossRefGoogle Scholar
  32. 32.
    El Tal AK, et al.: Rituximab: a monoclonal antibody to CD20 used in the treatment of pemphigus vulgaris. J Am Acad Dermatol 2006, 55:449–459.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmed AR, Posner MR, Spigelman Z, Ahmed AR: Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N Engl J Med 2006, 355:1772–1779.PubMedCrossRefGoogle Scholar
  34. 34.
    Stanley JR: Bullous pemphigoid. In Fitzpatrick’s Dermatology in General Medicine, edn 6. Edited by Freedberg IM. New York: McGraw-Hill; 2003:574–580.Google Scholar
  35. 35.
    Al-Fouzan AW, Galadari I, Oumeish I, Oumeish OY: Herpes gestationis (pemphigoid gestationis). Clin Dermatol 2006, 24:109–112.PubMedCrossRefGoogle Scholar
  36. 36.
    Yancey KB: Cicatricial pemphigoid. In Fitzpatrick’s Dermatology in General Medicine, edn 6. Edited by Freedberg IM. New York: McGraw-Hill; 2003:581–586.Google Scholar
  37. 37.
    Egan CA, Lazarova Z, Darling TN, et al.: Anti-epiligrin cicatricial pemphigoid: clinical findings, immunopathogenesis, and significant associations. Medicine (Baltimore) 2003, 82:177–186.CrossRefGoogle Scholar
  38. 38.
    Liu Z, Diaz LA, Troy JL, et al.: A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 1993, 92:2480–2488.PubMedGoogle Scholar
  39. 39.
    Yamamoto K, Inoue N, Masuda R, et al.: Cloning of hamster type XVII collagen cDNA, and pathogenesis of anti-type XVII collagen antibody and complement in hamster bullous pemphigoid. J Invest Dermatol 2002, 118:485–492.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu Z, Giudice GJ, Swartz SJ, et al.: The role of complement in experimental bullous pemphigoid. J Clin Invest 1995, 95:1539–1544.PubMedGoogle Scholar
  41. 41.
    Nelson KC, Zhao M, Schroeder PR, et al.: Role of different pathways of the complement cascade in experimental bullous pemphigoid. J Clin Invest 2006, 116:2892–2900.PubMedCrossRefGoogle Scholar
  42. 42.
    Laffitte E, Skaria M, Jaunin F, et al.: Autoantibodies to the extracellular and intracellular domain of bullous pemphigoid 180, the putative key autoantigen in bullous pemphigoid, belong predominantly to the IgG1 and IgG4 subclasses. Br J Dermatol 2001, 144:760–768.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu Z: Are anti-BP180 IgG1 or IgG4 autoantibodies pathogenic? J Invest Dermatol 2002, 119:989–990.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Z, Shapiro SD, Zhou X, et al.: A critical role for neutrophil elastase in experimental bullous pemphigoid. J Clin Invest 2000, 105:113–123.PubMedGoogle Scholar
  45. 45.
    Liu Z, Li N, Diaz LA, et al.: Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J Clin Invest 2005, 115:879–887.PubMedCrossRefGoogle Scholar
  46. 46.
    Kiss M, Husz S, Janossy T, et al.: Experimental bullous pemphigoid generated in mice with an antigenic epitope of the human hemidesmosomal protein BP230. J Autoimmun 2005, 24:1–10.PubMedCrossRefGoogle Scholar
  47. 47.
    Gammon WR, Fine JD, Forbes M, Briggaman RA: Immunofluorescence on split skin for the detection and differentiation of basement membrane zone autoantibodies. J Am Acad Dermatol 1992, 27:79–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Kromminga A, Sitaru C, Hagel C, et al.: Development of an ELISA for the detection of autoantibodies to BP230. Clin Immunol 2004, 111:146–152.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshida M, Hamada T, Amagai M, et al.: Enzyme-linked immunosorbent assay using bacterial recombinant proteins of human BP230 as a diagnostic tool for bullous pemphigoid. J Dermatol Sci 2006, 41:21–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Joly P, Roujeau JC, Benichou J, et al.: A comparison of oral and topical corticosteroids in patients with bullous pemphigoid. N Engl J Med 2002, 346:321–327.PubMedCrossRefGoogle Scholar
  51. 51.
    Walsh SR, Hogg D, Mydlarski PR: Bullous pemphigoid: from bench to bedside. Drugs 2005, 65:905–926.PubMedCrossRefGoogle Scholar
  52. 52.
    Ahmed AR: Intravenous immunoglobulin therapy in the treatment of patients with pemphigus vulgaris unresponsive to conventional immunosuppressive treatment. J Am Acad Dermatol 2001, 45:679–690.PubMedCrossRefGoogle Scholar
  53. 53.
    Chu J, Bradley M, Marinkovich MP: Topical tacrolimus is a useful adjunctive therapy for bullous pemphigoid. Arch Dermatol 2003, 139:813–815.PubMedCrossRefGoogle Scholar
  54. 54.
    Mockenhaupt M, Grosber M, Norganer J: Daclizumab: a novel therapeutic option in severe bullous pemphigoid. Acta Derm Venereol 2005, 85:65–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Guide SV, Marinkovich MP: Linear IgA bullous dermatosis. Clin Dermatol 2001, 19:719–727.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirako Y, Nishizawa Y, Sitaru C, et al.: The 97-kDa (LABD97) and 120-kDa (LAD-1) fragments of bullous pemphigoid antigen 180/type XVII collagen have different N-termini. J Invest Dermatol 2003, 121:1554–1556.PubMedCrossRefGoogle Scholar
  57. 57.
    Marinkovich MP, Taylor TB, Keene DR, et al.: LAD-1, the linear IgA bullous dermatosis autoantigen, is a novel 120-kDa anchoring filament protein synthesized by epidermal cells. J Invest Dermatol 1996, 106:734–738.PubMedCrossRefGoogle Scholar
  58. 58.
    Ishiko A, Shimizu H, Masunaga T, et al.: 97-kDa linear IgA bullous dermatosis (LAD) antigen localizes to the lamina lucida of the epidermal basement membrane. J Invest Dermatol 1996, 106:739–743.PubMedCrossRefGoogle Scholar
  59. 59.
    Zillikens D, Herzele K, Georgi M, et al.: Autoantibodies in a subgroup of patients with linear IgA disease react with the NC16A domain of BP1801. J Invest Dermatol 1999, 113:947–953.PubMedCrossRefGoogle Scholar
  60. 60.
    Akahoshi Y, Kanda G, Anan S, Yoshida H: Dermo-epidermal blister formation by linear IgA dermatosis sera in normal human skin in organ culture. J Dermatol 1987, 14:352–358.PubMedGoogle Scholar
  61. 61.
    Allen J, Wojnarowska F: Linear IgA disease: the IgA and IgG response to dermal antigens demonstrates a chiefly IgA response to LAD285 and a dermal 180-kDa protein. Br J Dermatol 2003, 149:1055–1058.PubMedCrossRefGoogle Scholar
  62. 62.
    Nicolas ME, Krause PK, Gibson LE, Murray JA: Dermatitis herpetiformis. Int J Dermatol 2003, 42:588–600.PubMedCrossRefGoogle Scholar
  63. 63.
    Marietta E, Black K, Camilleri M, et al.: A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J Clin Invest 2004, 114:1090–1097.PubMedCrossRefGoogle Scholar
  64. 64.
    Woodley DT, Gammon WR, Briggaman RA: Epidermolysis bullosa acquisita. In Fitzpatrick’s Dermatology in General Medicine, edn 6. Edited by Freedberg IM. New York: McGraw-Hill; 2003:609–616.Google Scholar
  65. 65.
    Lapiere JC, Woodley DT, Parente MG, et al.: Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa. J Clin Invest 1993, 92:1831–1839.PubMedCrossRefGoogle Scholar
  66. 66.
    Sitaru C, Mihai S, Otto C, et al.: Induction of dermalepidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest 2005, 115:870–878.PubMedCrossRefGoogle Scholar
  67. 67.
    Woodley DT, Chang C, Saadat P, et al.: Evidence that antitype VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita. J Invest Dermatol 2005, 124:958–964.PubMedCrossRefGoogle Scholar
  68. 68.
    Sitaru C, Chiriac MT, Mihai S, et al.: Induction of complement-fixing autoantibodies against type VII collagen results in subepidermal blistering in mice. J Immunol 2006, 177:3461–3468.PubMedGoogle Scholar
  69. 69.
    Shimanovich I, Mihai S, Oostingh GJ, et al.: Granulocyte-derived elastase and gelatinase B are required for dermal-epidermal separation induced by autoantibodies from patients with epidermolysis bullosa acquisita and bullous pemphigoid. J Pathol 2004, 204:519–527.PubMedCrossRefGoogle Scholar
  70. 70.
    Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005, 435:590–597.PubMedCrossRefGoogle Scholar
  71. 71.
    Rioux JD, Abbas AK: Paths to understanding the genetic basis of autoimmune disease. Nature 2005, 435:584–589.PubMedCrossRefGoogle Scholar
  72. 72.
    Fathman CG, Soares L, Chan SM, Utz PJ: An array of possibilities for the study of autoimmunity. Nature 2005, 435:605–611.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Stanford University School of Medicine and VA Palo Alto Medical CenterStanfordUSA

Personalised recommendations