Current Allergy and Asthma Reports

, Volume 7, Issue 2, pp 105–111 | Cite as

Nasonasal reflexes, the nasal cycle, and sneeze

  • James N. BaraniukEmail author
  • Dennis Kim


The nasal mucosa is a complex tissue that interacts with its environment and effects local and systemic changes. Receptors in the nose receive signals from stimuli, and respond locally through afferent, nociceptive, type C neurons to elicit nasonasal reflex responses mediated via cholinergic neurons. This efferent limb leads to responses in the nose (eg, rhinorrhea, glandular hyperplasia, hypersecretion with mucosal swelling). Anticholinergic agents appear useful against this limb for symptomatic relief of a “runny nose.” Chronic exposure to allergens can lead to hyperresponsiveness of the nasal mucosa. As a result, receptors upregulate specific ion channels to increase the sensitivity and potency of their reflex response. Nasal stimuli also affect distant parts of the body. Nerves in the sinus mucosa cause vasodilation; the lacrimal glands can be stimulated by nasal afferent triggers. Even the cardiopulmonary system can be affected via the trigeminal chemosensory system, where sensed irritants can lead to changes in tidal volume, respiratory rate, and blink frequency. The sneeze is an airway defense mechanism that removes irritants from the nasal epithelial surface. It is generally benign, but can lead to problems in certain circumstances. The afferent pathway involves histamine-mediated depolarization of H1 receptor-bearing type C trigeminal neurons and a complex coordination of reactions to effect a response.


Rhinitis Capsaicin Allergic Rhinitis Allergy Clin Immunol Acoustic Rhinometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Raphael GD, Meredith SD, Baraniuk JN, Kaliner M: Nasal reflexes. Am J Rhinology 1988, 2:8–12.Google Scholar
  2. 2.
    Baraniuk JN, Ali M, Yuta A, et al.: Hypertonic saline nasal provocation stimulates nociceptive nerves, substance P release, and glandular mucous exocytosis in normal humans. Am J Respir Crit Care Med 1999, 160:655–662.PubMedGoogle Scholar
  3. 3.
    Mossiman BL, White MV, Hohman RJ, et al.: Substance P, calcitonin-gene related peptide, and vasoactive intestinal peptide increase in nasal secretions after allergen challenge in atopic patients. J Allergy Clin Immunol 1993, 92:95–104.CrossRefGoogle Scholar
  4. 4.
    Chasin WD, Lofgren RH: Vidian nerve section for vasomotor rhinitis. Arch Otolaryngol 1967, 86:103–109.PubMedGoogle Scholar
  5. 5.
    Raphael GD, Haupstein-Raphael M, Kaliner MA: Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol 1983, 83:110–115.CrossRefGoogle Scholar
  6. 6.
    Blom HM, van Rijwijk JB, Garrelds IM, et al.: Intranasal capsaicin is efficacious in non-allergic, non-infectious perennial rhinitis. Clin Exp Allergy 27:796–801, 1997PubMedCrossRefGoogle Scholar
  7. 7.
    Silvers WS: The skier’s nose: a model of cold-induced rhinorrhea. Ann Allergy 1991, 67:32–36.PubMedGoogle Scholar
  8. 8.
    Stjarne P, Lundblad L, Lundberg JM, Anggard A: Capsaicin and nicotine sensitive afferent neurones and nasal secretion in healthy human volunteers and in patients with vasomotor rhinitis. Br J Pharmacol 1989, 96:693–701.PubMedGoogle Scholar
  9. 9.
    Malekzadeh S, Hamburger MD, Whelan PJ, et al.: Density of middle turbinate subepithelial mucous glands in patients with chronic rhinosinusitis. Otolaryngol Head Neck Surg 2002, 127:190–195.PubMedCrossRefGoogle Scholar
  10. 10.
    Landis BN, Beghetti M, Morel DR, et al.: Somato-sympathetic vasoconstriction to intranasal fluid administration with consecutive decrease in nasal nitric oxide. Acta Physiol Scand 2003, 177:507–515.PubMedCrossRefGoogle Scholar
  11. 11.
    Rogers DF, Barnes PJ: Opioid inhibitions of neurally mediated mucus secretion in human bronchi. Lancet 1989, 1:930–932.PubMedCrossRefGoogle Scholar
  12. 12.
    Baraniuk JN, Silver PB, Kaliner MA, Barnes PJ: Effects of ipratropium bromide on bradykinin nasal provocation in humans. Clin Exp Allergy 1994, 14:724–729.CrossRefGoogle Scholar
  13. 13.
    Riccio MM, Reynolds CJ, Hay DW, Proud D: Effects of intranasal administration of endothelin-1 to allergic and nonallergic individuals. Am J Respir Crit Care Med 1995, 152:1757–1764.PubMedGoogle Scholar
  14. 14.
    Sheahan P, Walsh RM, Walsh MA, Costello RW: Induction of nasal hyper-responsiveness by allergen challenge in allergic rhinitis: the role of afferent and efferent nerves. Clin Exp Allergy 2005, 35:45–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagenmann M, Baroody FM, Desrosiers M, et al.: Unilateral nasal allergen challenge leads to bilateral release of prostaglandin D2. Clin Exp Allergy 1996, 26:371–378.PubMedCrossRefGoogle Scholar
  16. 16.
    Baraniuk JN, Casado B, Maibach H, et al.: A chronic fatigue syndrome related proteome in cerebrospinal fluid. BMC Neurology 2005, 5:22.PubMedCrossRefGoogle Scholar
  17. 17.
    Druce HM, Wright RH, Kossoff D, Kaliner MA: Cholinergic nasal hyperreactivity in atopic subjects. J Allergy Clin Immunol 1985, 76:445–452.PubMedCrossRefGoogle Scholar
  18. 18.
    Jeney EMV, Raphael GD, Meredith SD, Kaliner MA: Abnormal nasal glandular secretion in recurrent sinusitis. J Allergy Clin Immunol 1990, 86:10–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Numata T, Konno A, Terada N, et al.: Role of vascular reflex in nasal mucosal swelling in nasal allergy. Laryngoscope 2000, 110:297–302.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanico AM, Philip G, Proud D, et al.: Comparison of nasal mucosal responsiveness to neuronal stimulation in non-allergic and allergic rhinitis: effects of capsaicin nasal challenge. Clin Exp Allergy 1998, 28:92–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Baroody FM, Gungor A, deTineo M, et al.: Comparison of the response to histamine challenge of the nose and the maxillary sinus: effect of loratadine. J Appl Physiol 1999, 87:1038–1047.PubMedGoogle Scholar
  22. 22.
    Deitmer T, Scheffler R: Nasal physiology in swimmers and swimmer’s sinusitis. Acta Otolaryngol (Stockh) 1990, 110:286–91.Google Scholar
  23. 23.
    Kayser R: Die exacte Messung der Luftdurchgangigtreir der Nase. Arch Larngol 1895, 3:101.Google Scholar
  24. 24.
    Stoksted P: The physiological cycle of the nose under normal and pathological conditions. Acta Otolarygol 1952, 42:175.Google Scholar
  25. 25.
    Kennedy DW, Zinreich SJ, Kumar AJ, et al.: Physiologic mucosal changes within the nose and ethmoid sinus: imaging of the nasal cycle by MRI. Laryngoscope 1988, 98:928–933.PubMedCrossRefGoogle Scholar
  26. 26.
    Hasegawa M, Kern EB: Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 1978, 16:19–29.PubMedGoogle Scholar
  27. 27.
    Eccles RB: The nasal cycle in respiratory defence. Acta Otorhinolaryngol Belg 2000, 54:281–286.PubMedGoogle Scholar
  28. 28.
    Hallen H, Geisler C, Haeggstrom A, Graf P: Variations in congestion of the nasal mucosa in man. Clin Otolaryngol Allied Sci 1996, 21:396–399.PubMedCrossRefGoogle Scholar
  29. 29.
    Lang C, Grutzenmacher S, Mlynski B, et al.: Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope 2003, 113:284–289.PubMedCrossRefGoogle Scholar
  30. 30.
    Soane RJ, Carney AS, Jones NS, et al.: The effect of the nasal cycle on mucociliary clearance. Clin Otolaryngol Allied Sci 2001, 26:9–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Qian W, Sabo R, Ohm M, et al.: Nasal nitric oxide and the nasal cycle. Laryngoscope 2001, 111:1603–1607.PubMedCrossRefGoogle Scholar
  32. 32.
    Jawad SS, Eccles R: Effect of pseudoephedrine on nasal airflow in patients with nasal congestion associated with common cold. Rhinology 1998, 36:73–76.PubMedGoogle Scholar
  33. 33.
    Hilberg O, Grymer LF, Pedersen OF: Spontaneous variations in congestion of the nasal mucosa. Ann Allergy Asthma Immunol 1995, 74:516–521.PubMedGoogle Scholar
  34. 34.
    Atanasov AT, Dimov PD: Nasal and sleep cycle: possible synchronization during night sleep. Med Hypotheses 2003, 61:275–257.PubMedCrossRefGoogle Scholar
  35. 35.
    Mohan SM, Eccles R: Effect of inspiratory and expiratory air flow on congestion and decongestion in the nasal cycle. Indian J Physiol Pharmacol 1989, 33:191–193.PubMedGoogle Scholar
  36. 36.
    Galioto G, Mevio E, Galioto P, et al.: Modifications of the nasal cycle in patients with hypothalamic disorders: Kallmann’s syndrome. Ann Otol Rhinol Laryngol 1991, 100:559–562.PubMedGoogle Scholar
  37. 37.
    Backon J, Matamoros N, Ramirez M, et al.: A functional vagotomy induced by unilateral forced right nostril breathing, decreases intraocular pressure in open and closed angle glaucoma. Br J Ophthalmol 1990, 74:607–609.PubMedGoogle Scholar
  38. 38.
    Leung AKC, Robson WLM: Sneezing. J Otolaryngol 1994, 23:125–129.PubMedGoogle Scholar
  39. 39.
    Baydin A, Nural MS, Guven H, et al.: Acute aortic dissection provoked by sneeze: a case report. Emerg Med J 2005, 22:756–757.PubMedCrossRefGoogle Scholar
  40. 40.
    Gonzalez F, Cal V, Elhendi W: Orbital emphysema after sneezing. Ophthal Plast Reconstr Surg 2005, 21:309–311.PubMedCrossRefGoogle Scholar
  41. 41.
    Rottger C, Trittmacher S, Gerriets T, et al.: Sinus thrombosis after a jump from a small rock and a sneezing attack: minor endothelial trauma as a precipitating factor for cerebral venous thrombosis? Headache 2004, 44:812–815.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin TJ, Maccia CA, Turnier CG: Psychogenic intractable sneezing: case reports and a review of treatment options. Ann Allergy Asthma Immunol 2003, 91:575–578.PubMedCrossRefGoogle Scholar
  43. 43.
    Gopalan P, Browning ST: Intractable paroxysmal sneezing. J Laryngol Otol 2002, 116:958–959.PubMedCrossRefGoogle Scholar
  44. 44.
    Widdicombe JG: Reflexes from the upper respiratory tract. In: Handbook of Physiology. Section 3. The Respiratory System. Volume II, Control of Breathing, Part 1. Edited by Fishman AP, Cherniak NS, Widdicombe JG, Geiger SR. Washington, DC: American Physiological Society; 1986:363–394.Google Scholar
  45. 45.
    Garcia-Moreno JM: Sneezing. A review of its causation and pathophysiology. Rev Neurol 2005, 41:615–621.PubMedGoogle Scholar
  46. 46.
    Seijo-Martinez M, Varela-Freijanes A, Grandes J, Vazquez F: Sneeze-related area in the medulla: localization of the human sneezing centre? J Neurol Neurosurg Psychiatry 2006, 77:559–561.PubMedCrossRefGoogle Scholar
  47. 47.
    Boldogh I, Bacsi A, Choudhury BK, et al.: ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 2005, 115:2169–2179.PubMedCrossRefGoogle Scholar
  48. 48.
    Asokananthan N, Graham PT, Fink J, et al.: Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002, 168:3577–3585.PubMedGoogle Scholar
  49. 49.
    Casado B, Pannell LK, Viglio S, et al.: Analysis of the sinuisitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization quadrupole-time of flight tandem mass spectrometry. Electrophoresis 2004, 25:1386–1393.PubMedCrossRefGoogle Scholar
  50. 50.
    Rusznak C, Sapsford RJ, Devalia JL, et al.: Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 1999, 20:1238–1250.PubMedGoogle Scholar
  51. 51.
    John RJ, Rusznak C, Ramjee M, et al.: Functional effects of the inhibition of the cysteine protease activity of the major House dust mite allergen Der p 1 by a novel peptide-based inhibitor. Clin Exp Allergy 2000, 30:784–793.PubMedCrossRefGoogle Scholar
  52. 52.
    Baraniuk JN, Bolick M, Esch R, Buckley CE: Quantification of pollen solute release using pollen grain column chromatography. Allergy 1992, 47:411–417.PubMedCrossRefGoogle Scholar
  53. 53.
    Wedback A, Enbom H, Eriksson NE, et al.: Seasonal nonallergic rhinitis (SNAR): a new disease entity? A clinical and immunological comparison between SNAR, seasonal allergic rhinitis and persistent non-allergic rhinitis. Rhinology 2005, 43:86–92.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Rheumatology, Immunology and Allergy, Room B105, Lower Level Kober-Cogan BuildingGeorgetown UniversityWashington, DCUSA

Personalised recommendations