Current Allergy and Asthma Reports

, Volume 6, Issue 1, pp 32–39 | Cite as

Suppressor of cytokine signaling 3 (SOCS3) in Th2 cells evokes Th2 cytokines, IgE, and eosinophilia

  • Masato KuboEmail author
  • Hiromasa Inoue


Atopic dermatitis, allergic rhinitis, and bronchial asthma are allergic immune disorders characterized by a predominance of T helper 2 (Th2) cells, the resulting elevation of allergen-speci.c immunoglobulin E (IgE), and mast cell- and eosinophil-associated inflammation. The cytokine environment at the site of the initial antigen stimulation determines the direction of helper T-cell differentiation into Th1 or Th2 cells. Therefore, negative regulators of cytokine signaling, suppressors of cytokine signaling (SOCS) proteins, play an important role in Th2-mediated allergic responses through the control of the balance between Th1 and Th2 cells. SOCS3 and SOCS5 are predominantly expressed in Th2 and Th1 cells, respectively, and they reciprocally inhibit the Th1 and Th2 differentiation processes. In this article, we discuss the role of SOCS3 and SOCS5 proteins in atopic asthma and allergic conjunctivitis and explore the potential of SOCS proteins as targets for therapeutic strategies in allergic disorders.


Allergic Rhinitis Allergic Conjunctivitis Allergic Conjunctivitis Kinase Inhibitory Region Experimental Allergic Conjunctivitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Wills-Karp M: Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999, 17:255–281.PubMedCrossRefGoogle Scholar
  2. 2.
    Burrows B, Martinez FD, Halonen M, et al.: Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med 1989, 320:271–277.PubMedCrossRefGoogle Scholar
  3. 3.
    Martinez FD, Wright AL, Taussig LM, et al.: Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med 1995, 332:133–138.PubMedCrossRefGoogle Scholar
  4. 4.
    Arima K, Umeshita-Suyama R, Sakata Y, et al.: Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma. J Allergy Clin Immunol 2002, 109:980–987.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansen G, Berry G, DeKruyff RH, Umetsu DT: Allergenspecific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 1999, 103:175–183.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Shea JJ, Gadina M, Schreiber RD 2002. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002, 109(Suppl):S121-S131.PubMedCrossRefGoogle Scholar
  7. 7.
    Alexander WS: Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2002, 2:410–416. This is a review article summarizing the history and the functional signi.cance of SOCS family proteins in in vitro insight.PubMedGoogle Scholar
  8. 8.
    Greenhalgh CJ, Miller ME, Hilton DJ, Lund PK: Suppressors of cytokine signaling: relevance to gastrointestinal function and disease. Gastroenterology 2002, 123:2064–2081.PubMedCrossRefGoogle Scholar
  9. 9.
    Ihle JN: Cytokine receptor signalling. Nature 1995, 377:591–594.PubMedCrossRefGoogle Scholar
  10. 10.
    Yasukawa H, Sasaki A, Yoshimura A: Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000, 18:143–164.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang JG, Farley A, Nicholson SE, et al.: The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci U S A 1995, 96:2071–2081.CrossRefGoogle Scholar
  12. 12.
    Kamura T, Sato S, Haque D, et al.: The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998, 12:3872–3881.PubMedGoogle Scholar
  13. 13.
    Yoshimura A, Ohkubo T, Kiguchi T, et al.: A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 1995, 14:2816–2826.PubMedGoogle Scholar
  14. 14.
    Matsumoto A, Seki Y, Kubo M, et al.: Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 1999, 19:6396–6407.PubMedGoogle Scholar
  15. 15.
    Naka T, Narazaki M, Hirata M, et al.: Structure and function of a new STAT-induced STAT inhibitor. Nature 1997, 387:924–929.PubMedCrossRefGoogle Scholar
  16. 16.
    Starr R, Willson TA, Viney EM, et al.: A family of cytokine-inducible inhibitors of signalling. Nature 1997, 387:917–921.PubMedCrossRefGoogle Scholar
  17. 17.
    Endo TA, Masuhara M, Yokouchi M, et al.: A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997, 387:921–924.PubMedCrossRefGoogle Scholar
  18. 18.
    Yasukawa H, Misawa H, Sakamoto H, et al.: The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 1999, 18:1309–1320.PubMedCrossRefGoogle Scholar
  19. 19.
    Giordanetto F, Kroemer RT: A three-dimensional model of suppressor of cytokine signalling 1 (SOCS-1). Protein Eng 2003, 16:115–124.PubMedCrossRefGoogle Scholar
  20. 20.
    Nicholson SE, De Souza D, Fabri LJ, et al.: Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A 2000, 97:6493–6498.PubMedCrossRefGoogle Scholar
  21. 21.
    Lehmann U, Schmitz J, Weissenbach M, et al.: SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J Biol Chem 2003, 278:661–671.PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki A, Yasukawa H, Shouda T, et al.: CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 2000, 275:29338–29347.PubMedCrossRefGoogle Scholar
  23. 23.
    Frantsve J, Schwaller J, Sternberg DW, et al.: Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001, 21:3547–3557.PubMedCrossRefGoogle Scholar
  24. 24.
    Kamizono S, Hanada T, Yasukawa H, et al.: The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 2001, 276:12530–12538.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang JG, Metcalf D, Rakar S, et al.: The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proc Natl Acad Sci U S A 2001, 98:13261–13265.PubMedCrossRefGoogle Scholar
  26. 26.
    Kubo M, Hanada T, Yoshimura A: Suppressors of cytokine signaling and immunity. Nat Immunol 2003, 4:1169–1176. This is a review article summarizing the functional signi.cance of SOCS family proteins in several inflammatory diseases.PubMedCrossRefGoogle Scholar
  27. 27.
    Hilton DJ: Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999, 55:1568–1577.PubMedCrossRefGoogle Scholar
  28. 28.
    Fujimoto M, Naka T: Regulation of cytokine signaling by SOCS family molecules. Trends Immunol 2003, 24:659–666.PubMedCrossRefGoogle Scholar
  29. 29.
    Cohney SJ, Sanden D, Cacalano NA, et al.: SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol 1999, 19:4980–4988.PubMedGoogle Scholar
  30. 30.
    Bjorbaek C, Elmquist JK, Frantz JD, et al.: Identi.cation of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998, 1:619–625.PubMedCrossRefGoogle Scholar
  31. 31.
    Ito S, Ansari P, Sakatsume M, et al.: Interleukin-10 inhibits expression of both interferon alpha-and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 1999, 93:1456–1463.PubMedGoogle Scholar
  32. 32.
    Auernhammer CJ, Melmed S: Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. Endocrinology 1999, 140:1559–1566.PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki A, Hanada T, Mitsuyama K, et al.: CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 2001, 193:471–481.PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshimura A, Mori H, Ohishi M, et al.: Negative regulation of cytokine signaling in.uences inflammation. Curr Opin Immunol 2003, 15:704–708.PubMedCrossRefGoogle Scholar
  35. 35.
    Yasukawa H, Yajima T, Duplain H, et al.: The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J Clin Invest 2003, 111:469–478.PubMedCrossRefGoogle Scholar
  36. 36.
    Egwuagu CE, Yu CR, Zhang M, et al.: Suppressors of cytokine signaling proteins are differentially expressed in Th1 and Th2 cells: implications for Th cell lineage commitment and maintenance. J Immunol 2002, 168:3181–3187.PubMedGoogle Scholar
  37. 37.
    Seki Y, Inoue H, Nagata N, et al.: SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med 2003, 9:1047. This paper clearly demonstrated pathological importance of SOCS3 in allergic disease and a role as negative regulator for IL-12 mediated Th1 differentiation.PubMedCrossRefGoogle Scholar
  38. 38.
    Can.eld S, Lee Y, Schroder A, Rothman P: Cutting edge: IL-4 induces suppressor of cytokine signaling-3 expression in B cells by a mechanism dependent on activation of p38 MAPK. J Immunol 2005, 174:2494–2498.Google Scholar
  39. 39.
    Yamamoto K, Yamaguchi M, Miyasaka N, Miura O: SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor beta2 subunit. Biochem Biophys Res Commun 2003, 310:1188–1193.PubMedCrossRefGoogle Scholar
  40. 40.
    Owaki T, Yoshimoto T: IL-27 suppresses CD28-mediated IL-2 production through SOCS3. J Immunol, In press.Google Scholar
  41. 41.
    Takatori H, Nakajima H, Kagami S, et al.: Stat5a inhibits IL-12-induced Th1 cell differentiation through the induction of suppressor of cytokine signaling 3 expression. J Immunol 2005, 174:4105–4112.PubMedGoogle Scholar
  42. 42.
    Matsumoto A, Seki Y, Watanabe R, et al.: A role of suppressor of cytokine signaling 3 (SOCS3/CIS3/SSI3) in CD28-mediated interleukin 2 production. J Exp Med 2003, 197:425–436.PubMedCrossRefGoogle Scholar
  43. 43.
    Miyazaki Y, Inoue H, Matsumura M, et al.: Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-de.cient mice. J Immunol 2005, 175:2401–2407.PubMedGoogle Scholar
  44. 44.
    Arakawa S, Hatano Y, Katagiri K: Differential expression of mRNA for Th1 and Th2 cytokine-associated transcription factors and suppressors of cytokine signalling in peripheral blood mononuclear cells of patients with atopic dermatitis. Clin Exp Immunol 2004, 135:505–510.PubMedCrossRefGoogle Scholar
  45. 45.
    Ozaki A, Seki Y, Fukushima A, Kubo M: The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS) 3 and SOCS5. J Immunol 2005, 175:5489–5497. This work directly shows the possibility of modi.cation of SOCS function and expression as a therapeutic candidate.PubMedGoogle Scholar
  46. 46.
    Huang H, Paul WE: Impaired interleukin 4 signaling in T helper type 1 cells. J Exp Med 1998, 187:1305–1313.PubMedCrossRefGoogle Scholar
  47. 47.
    Kubo M, Ransom J, Webb D, et al.: T-cell subset-speci.c expression of the IL-4 gene is regulated by a silencer element and STAT6. EMBO J 1997, 16:4007–4020.PubMedCrossRefGoogle Scholar
  48. 48.
    Seki Y, Hayashi K, Matsumoto A, et al.: Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci U S A 2002, 99:13003–13008.PubMedCrossRefGoogle Scholar
  49. 49.
    Brender C, Columbus R, Metcalf D, et al.: SOCS5 is expressed in primary B and T lymphoid cells but is dispensable for lymphocyte production and function. Mol Cell Biol 2004, 24:6094–6103.PubMedCrossRefGoogle Scholar
  50. 50.
    Inoue H, Kubo M: SOCS proteins in T helper cell differentiation: implications for allergic disorders? Expert Rev Mol Med 2004, 6:1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Laboratory for Signal Network, RIKEN Research Center for Allergy and Immunology (RCAI)RIKEN Yokohama InstituteKanagawaJapan

Personalised recommendations