Advertisement

Current Allergy and Asthma Reports

, Volume 5, Issue 4, pp 302–307 | Cite as

Immunologic screening of children with recurrent otitis media

  • Selma P. Wiertsema
  • Reinier H. Veenhoven
  • Elisabeth A. M. Sanders
  • Ger T. Rijkers
Article

Abstract

Some 5% to 10% of all infants and toddlers suffer from four or more episodes of otitis per year. Usually, this is a temporary problem that resolves with increasing age. In a minority of cases, otitis episodes are frequent or have an abnormal course, with complications such as mastoiditis. In these cases, immunologic screening is indicated, to exclude an immunodeficiency. Agammaglobulinemia or hypogammaglobulinemia is rare among these patients. Other immune defects that occur more often are deficient or lowered immunoglobulin (Ig)A or decreased levels of one or more IgG subclass, in particular IgG2. The specific antibody response to bacterial capsular polysaccharides often is disturbed. These findings can give direction to the treatment of children with frequent, recurrent otitis.

Keywords

Otitis Medium Acute Otitis Medium Pneumococcal Conjugate Vaccine Polysaccharide Vaccine Recurrent Otitis Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Teele DW, Klein JO, Rosner B: Greater Boston Otitis Media Study Group. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis 1989, 160:83–94.PubMedGoogle Scholar
  2. 2.
    Sanders LA, van de Winkel JG, Rijkers GT, et al.: Fc gamma receptor IIa (CD32) heterogenecity in patients with recurrent bacterial respiratory tract infections. J Infect Dis 1994, 170:854–861. Showing the impact of a genetic polymorphism of Fc receptors for IgG on frequency and severity of respiratory tract infections.PubMedGoogle Scholar
  3. 3.
    Del Beccaro MA, Mendelman PM, Inglis AF, et al.: Bacteriology of acute otitis media: a new perspective. J Pediatr 1992, 120:81–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Leinonen MK: Detection of pneumoccal capsular polysaccharide antigens by latex agglutination, counterimmunoelectrophoresis, and radioimmunoassay in middle ear exudates in acute otitis media. J Clin Microbiol 1980, 11:135–40.PubMedGoogle Scholar
  5. 5.
    Henrichsen J: Six newly recognized types of Streptococcus pneumoniae. J Clin Microb 1995, 33:2759–2762.Google Scholar
  6. 6.
    Hausdorff WP, Yothers G, Dagan R, et al.: Multinational study of pneumococcal serotypes causing acute otitis media in children. Pediatr Infect Dis J 2002, 21:1008–1016.PubMedCrossRefGoogle Scholar
  7. 7.
    Rodriguez ME, van der Pol WL, Sanders LA, van de Winkel JG: Crucial role of FcgammaRIIa (CD32) in assessment of functional anti-Streptococcus pneumoniae antibody activity in human sera. J Infect Dis 1999, 179:423–433.PubMedCrossRefGoogle Scholar
  8. 8.
    Berman S, Lee B, Nuss R, et al.: Immunoglobulin G, total and subclass in children with or without recurrent otitis media. J Pediatr 1992, 121:249–251.PubMedCrossRefGoogle Scholar
  9. 9.
    Sørensen CH, Nielsen LK: Plasma IgG, IgG subclasses and acute-phase proteins in children with recurrent acute otitis media. APMIS 1988, 96:676–680.PubMedCrossRefGoogle Scholar
  10. 10.
    Freijd A, Oxelius VA, Rynnel-Dagoo B: A prospective study demonstrating an association between plasma IgG2 concentrations and susceptibility to otitis media in children. Scand J Infect Dis 1985, 17:115–120.PubMedCrossRefGoogle Scholar
  11. 11.
    Jørgensen F, Andersson B, Hanson LA: Gamma-globulin treatment of recurrent acute otitis media in children. Pediatr Infect Dis J 1990, 9:389–394.PubMedCrossRefGoogle Scholar
  12. 12.
    Veenhoven R, Rijkers G, Schilder A, et al.: Immunoglobulins in otitis-prone children. Pediatric Res 2004, 55:159–162.CrossRefGoogle Scholar
  13. 13.
    Freijd A, Hämmarström L, Persson MAA, Smith CIE: Plasma anti-pneumococcal antibody activity of the IgG class and subclasses in otitis-prone children. Clin Exp Immunol 1984, 56:233–238.PubMedGoogle Scholar
  14. 14.
    Sanders EAM, Rijkers GT, Tenbergen-Meekes AM, et al.: Immunoglobulin isotype specific antibody responses to pneumococcal polysaccharide vaccine in patients with recurrent respiratory tract infections. Pediatr Res 1995, 37:812–819.PubMedCrossRefGoogle Scholar
  15. 15.
    Herrod HG, Gross S, Insel R: Selective antibody deficiency to Haemophilus influenzae type B capsular polysaccharide vaccination in children with recurrent respiratory tract infection. J Clin Immunol 1989, 9:429–434. This study describes anti-polysaccharide antibody deficiency as an underlying cause for upper respiratory tract infection.PubMedCrossRefGoogle Scholar
  16. 16.
    Dhooge IJ, van Kempen MJ, Sanders LA, Rijkers GT: Deficient IgA and IgG2 anti-pneumococcal antibody levels and response to vaccination in otitis-prone children. Int J Pediatr Otorhinolaryngol 2002, 64:133–141.PubMedCrossRefGoogle Scholar
  17. 17.
    Breukels MA, Rijkers GT, Voorhorst-Ogink MM, et al.: Pneumococcal conjugate vaccine primes for polysaccharide-inducible IgG2 antibody response in children with recurrent otitis media acuta. J Infect Dis 1999, 179:1152–1156.PubMedCrossRefGoogle Scholar
  18. 18.
    Veenhoven R, van Kempen W, Wiertsema S, et al.: Immunogenicity of combined pneumococcal conjugate and polysaccharide vaccination in children with recurrent AOM (abstract). 4th International Symposium on Pneumococci and Pneumococcal Diseases. Helsinki, 2004:233.Google Scholar
  19. 19.
    Sorensen RU, Leiva LE, Giangrosso PA, et al.: Response to a heptavalent conjugate Streptococcus pneumoniae vaccine in children with recurrent infections who are unresponsive to the polysaccharide vaccine. Pediatr Infect Dis J 1998, 17:685–691.PubMedCrossRefGoogle Scholar
  20. 20.
    Zielen S, Bühring I, Strnad N, et al.: Immunogenicity and tolerance of a 7-valent pneumococcal conjugate vaccine in nonresponders to the 23-valent pneumococcal vaccine. Infect Immun 2000, 68:1435–1440. Anti-polysaccharide antibody deficiency can be rescued to a certain degree by pneumococcal conjugate vaccination.PubMedCrossRefGoogle Scholar
  21. 21.
    Bogaert D, Veenhoven RH, Sluijter M, et al.: Molecular epidemiology of pneumococcal colonization in response to pneumococcal conjugate vaccination in children with recurrent acute otitis media. J Clin Microbiol 2005, 43:74–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Wiertsema SP, Sanders EA, Veenhoven RH, et al.: Antibody levels after regular childhood vaccinations in the immunological screening of children with recurrent otitis media. J Clin Immunol 2004, 24:354–360.PubMedCrossRefGoogle Scholar
  23. 23.
    Eskola J, Kilpi T, Palmu A, et al.: Finnish Otitis Media Study Group. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 2001, 344:403–409. Reduction of vaccine type OMA episodes by pneumococcal conjugate vaccination, partly counteracted by replacement disease.PubMedCrossRefGoogle Scholar
  24. 24.
    Jodar L, Butler J, Carlone G, et al.: Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 2003, 21:3265–3272. Guidelines from a WHO Committee on laboratory evaluation of pneumococcal vaccination response.PubMedCrossRefGoogle Scholar
  25. 25.
    Ekstrom N, Ahman H, Verho J, et al.: Kinetics and avidity of antibodies evoked by heptavalent pneumococcal conjugate vaccines PncCRM and PncOMPC in the Finnish Otitis Media Vaccine Trial. Infect Immun 2005, 73:369–377.PubMedCrossRefGoogle Scholar
  26. 26.
    Kilpi T, Ahman H, Jokinen J, et al.: Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharidemeningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin Infect Dis 2003, 37:1155–1164.PubMedCrossRefGoogle Scholar
  27. 27.
    Zinkernagel RM, Hengartner H: On immunity against infections and vaccines: credo 2004. Scand J Immunol 2004, 60:9–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Weller S, Reynaud CA, Weill JC: Vaccination against encapsulated bacteria in humans: paradoxes. Trends Immunol 2005, 26:85–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Peset Llopis MJ, Harms G, Hardonk MJ, Timens W: Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells. J Allergy Clin Immunol 1996, 97:1015–1024.CrossRefGoogle Scholar
  30. 30.
    Weller S, Braun MC, Tan BK, et al.: Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 2004, 104:3647–3654. First report describing the phenotype of memory-type B lymphocytes in a polysaccharide antibody response.PubMedCrossRefGoogle Scholar
  31. 31.
    Nurkka A, Ahman H, Korkeila M, et al.: Serum and salivary anti-capsular antibodies in infants and children immunized with the heptavalent pneumococcal conjugate vaccine. Pediatr Infect Dis J 2001, 20:25–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Korkeila M, Lehtonen H, Ahman H, et al.: Salivary anti-capsular antibodies in infants and children immunised with Streptococcus pneumoniae capsular polysaccharides conjugated to diphtheria or tetanus toxoid. Vaccine 2000, 18:1218–1226.PubMedCrossRefGoogle Scholar
  33. 33.
    Jakobsen H, Jonsdottir I: Mucosal vaccination against encapsulated respiratory bacteria—new potentials for conjugate vaccines? Scand J Immunol 2003, 58:119–128.PubMedCrossRefGoogle Scholar
  34. 34.
    Jakobsen H, Saeland E, Gizurarson S, et al.: Intranasal immunization with pneumococcal polysaccharide conjugate vaccines protects mice against invasive pneumococcal infections. Infect Immun 1999, 67:4128–4133.PubMedGoogle Scholar
  35. 35.
    Lynch JM, Briles DE, Metzger DW: Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. Infect Immun 2003, 71:4780–4788.PubMedCrossRefGoogle Scholar
  36. 36.
    Zinkernagel RM: On "reactivity" versus "tolerance." Immunol Cell Biol 2004, 82:343–352.PubMedCrossRefGoogle Scholar
  37. 37.
    Nguyen LH, Manoukian JJ, Sobol SE, et al.: Similar allergic inflammation in the middle ear and the upper airway: evidence linking otitis media with effusion to the united airways concept. J Allergy Clin Immunol 2004, 114:1110–1115.PubMedCrossRefGoogle Scholar
  38. 38.
    Poland GA, Jacobson RM: The genetic basis for variation in antibody response to vaccines. Curr Opin Pediatr 1998, 10:208–215.PubMedCrossRefGoogle Scholar
  39. 39.
    Kruskall MS, Alper CA, Awdeh Z, et al.: The immune response to hepatitis B vaccine in humans: inheritance patterns in families. J Exp Med 1992, 175:495–502.PubMedCrossRefGoogle Scholar
  40. 40.
    Beghe B, Barton S, Rorke S, et al.: Polymorphisms in the interleukin-4 and interleukin-4 receptor alpha chain genes confer susceptibility to asthma and atopy in a Caucasian population. Clin Exp Allergy 2003, 33:1111–1117.PubMedCrossRefGoogle Scholar
  41. 41.
    Heumann D, Barras C, Severin A, et al.: Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immunol 1994, 62:2715–2721.Google Scholar
  42. 42.
    Hobbs K, Negri J, Klinnert M, et al.: Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am J Respir Crit Care Med 1998, 158:1958–1962.PubMedGoogle Scholar
  43. 43.
    Graves PE, Kabesch M, Halonen M, et al.: A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 2000, 105:506–513.PubMedCrossRefGoogle Scholar
  44. 44.
    Gentile DA, Doyle WJ, Zeevi A, et al.: Cytokine gene polymorphisms moderate illness severity in infants with respiratory syncytial virus infection. Hum Immunol 2003, 64:338–344.PubMedCrossRefGoogle Scholar
  45. 45.
    Eisen DP, Minchinton RM: Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003, 37:1496–1505.PubMedCrossRefGoogle Scholar
  46. 46.
    Cook DN, Pisetsky DS, Schwartz DA: Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004, 5:975–979.PubMedCrossRefGoogle Scholar
  47. 47.
    Koppelman GH, Postma DS: The genetics of CD14 in allergic disease. Curr Opin Allergy Clin Immunol 2003, 3:347–352.PubMedCrossRefGoogle Scholar
  48. 48.
    Takeuchi O, Takeda K, Hoshino K, et al.: Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 2000, 12:113–117.PubMedCrossRefGoogle Scholar
  49. 49.
    Picard C, Puel A, Bonnet M, et al.: Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003, 299:2076–2079.PubMedCrossRefGoogle Scholar
  50. 50.
    Casselbrant ML, Mandel EM: Genetic susceptibility to otitis media. Curr Opin Allergy Clin Immunol 2005, 5:1–4.PubMedCrossRefGoogle Scholar
  51. 51.
    LeSouef P: Genetics of asthma: What do we need to know? Pediatr Pulmonol Suppl 1997, 15:3–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Rosenfeld RM: Clinical efficacy of medical therapy. In Evidence-based Otitis Media, edn 2. Edited by Rosenfeld RM, Bluestone CD. Ontario, Canada: BC Decker; 2003:199–226.Google Scholar
  53. 53.
    Black S, Shinefield H, Fireman B, et al., and the Northern California Kaiser Permanente Vaccine Study Center: Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J 2000, 19:187–195.PubMedCrossRefGoogle Scholar
  54. 54.
    Veenhoven R, Bogaert D, Uiterwaal C, et al.: Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media. Lancet 2003, 361:2189–2195. Pneumococcal conjugate vaccine, despite being highly immunogenic, does not prevent occurrence of new OMA episodes in otitis-prone children.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Selma P. Wiertsema
    • 1
  • Reinier H. Veenhoven
    • 1
  • Elisabeth A. M. Sanders
    • 1
  • Ger T. Rijkers
    • 1
  1. 1.Department of ImmunologyUniversity Medical Center Utrecht, Wilhelmina Children’s HospitalEA UtrechtThe Netherlands

Personalised recommendations