A genetic engineering strategy to eliminate peanut allergy

  • Hortense Dodo
  • Koffi Konan
  • Olga Viquez


Peanut allergy is an IgE-mediated hypersensitivity reaction with an increasing prevalence worldwide. Despite its seriousness, to date, there is no cure. Genetic engineering strategies can provide a solution. The post-transcriptional gene silencing (PTGS) model can be used effectively to knock out the production of allergenic proteins in peanut by specific degradation of the endogenous target messenger RNA (mRNA). Ara h 2, the most potent peanut allergenic protein, was selected as a model to demonstrate the feasibility of this concept. Transgenic peanut plants were produced via microprojectile-mediated transformation of peanut embryos using a plasmid construct, which contains a fragment of the coding region of Ara h 2 linked to an enhanced CaMV 35S constitutive promoter. Molecular analyses, including polymerase chain reaction and Southern blots, confirmed the presence of the stable integration of the Ara h 2 transgene into the peanut genome. Northern hybridization showed the expression of the Ara h 2 transgene in all vegetative tissues of the mature transgenic peanut plants, indicating the stable expression of the truncated Ara h 2 transgene throughout the development of the plants. It is, therefore, reasonable to expect that the truncated Ara h 2 transgene transcripts will be synthesized in the seeds and will trigger the specific degradation of endogenous Ara h 2 mRNA. The next step will be to grow the transgenic peanut plants to full maturity for seed production and to determine the level of allergen Ara h 2.

References and Recommended Reading

  1. 1.
    Molkhou P: Épidémiologie de l’allergie alimentaire. J et de Puériculture 2004, 17:249–253.CrossRefGoogle Scholar
  2. 2.
    Bock SA, Munoz-Furlong A, Sampson HA: Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 2001, 107:191–193.PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor S: Chemistry and detection of food allergens. Food Technology 1992, 46:146–152.Google Scholar
  4. 4.
    Bock SA: The natural history of food sensitivity. J Allergy Clin Immunol 1982, 69:173–177.PubMedCrossRefGoogle Scholar
  5. 5.
    Sicherer SH, Munoz-Furlong A, Burks AW, Sampson HA: Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol 1999, 103:559–562.PubMedCrossRefGoogle Scholar
  6. 6.
    Oppenheimer JJ, Nelson HS, Bock A, et al.: Treatment of peanut allergy with rush immunotherapy. J Allergy Clin Immunol 1992, 90:256–262.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson HS, Lahr J, Rule R, et al.: Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol 1997, 6:744–751.CrossRefGoogle Scholar
  8. 8.
    Roy K, Mao HQ, Huang SK, Leong KW: Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Med 1999, 5:387–391.PubMedCrossRefGoogle Scholar
  9. 9.
    Maleki SJ, Chung SY, Champagne ET, Raufman JP: The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol 2000, 106:763–768.PubMedCrossRefGoogle Scholar
  10. 10.
    Beyer K, Morrow E, Xiu-Min L, et al.: Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 2001, 107:1077–1081.PubMedCrossRefGoogle Scholar
  11. 11.
    Leung DY, Sampson HA, Yunginger JW, et al.: Avon Longitudinal Study of Parents and Children Study Team. National Jewish Medical and Research Center, Denver, USA. N Engl J Med 2003, 348:986–993.PubMedCrossRefGoogle Scholar
  12. 12.
    The Peanut Institute: Eating peanuts improves cardiovascular risk factors in healthy adults: benefits beyond consumption of good fats. http:/www.peanut-institute.org. Accessed September, 2004.Google Scholar
  13. 13.
    Krishna TG, Pawar SE, Mitra R: Variation and inheritance of the arachin polypeptides of groundnut (Arachis hypogaea L.). Theor Appl Genet 1986, 73:82.CrossRefGoogle Scholar
  14. 14.
    Higgins TJV: Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol 1984, 35:191–195.CrossRefGoogle Scholar
  15. 15.
    Clarke MC, Kilburn SA, Hourihane JO, et al.: Serological characteristics of peanut allergy. Clin Exp Allergy 1998, 28:1251–1257.PubMedCrossRefGoogle Scholar
  16. 16.
    Kleber-Janke T, Crameri R, Appenzeller U, et al.: Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Appl Immunol 1999, 119:265–274.CrossRefGoogle Scholar
  17. 17.
    Koppelman SJ, Bruijnzeel-Koomen CA, Hessing M, De Jongh HH: Heat-induced conformational changes of Ara h1, a major peanut allergen, do not affect its allergenic properties. J Biol Chem 1999, 274:4770–4777.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanley JS, King N, Burks AW, et al.: Identification and mutational analysis of the immunodominant IgE binding epitopes of the peanut allergen Ara h2. Arch Bioch Biophys 1997, 342:244–253.CrossRefGoogle Scholar
  19. 19.
    Burks AW, Williams LW, Helm RM, et al.: Identification of a major peanut allergen, Ara hI, in patients with atopic dermatitis and positive peanut challenges. J Allergy Clin Immunol 1991, 88:172–179.PubMedCrossRefGoogle Scholar
  20. 20.
    Burks AW, Cockrell G, Stanley JS, et al.: Recombinant peanut allergen Ara hI expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 1995, 96:1715–1721.PubMedCrossRefGoogle Scholar
  21. 21.
    Viquez OM, Konan NK, Dodo HW: Structure and organization of the genomic clone of a major peanut allergen gene, Ara h 1. Mol Immunol 2003, 40:565–571.PubMedCrossRefGoogle Scholar
  22. 22.
    Koppelman SJ, Wensing M, Ertmann M, et al.: Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h 2 is the most important peanut allergen. Clin Exp Allergy 2004, 34:583–590.PubMedCrossRefGoogle Scholar
  23. 23.
    Burks AW, Williams LW, Connaughton C, et al.: Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 1992, 90:962–969.PubMedCrossRefGoogle Scholar
  24. 24.
    Maleki SJ, Viquez O, Jacks T, et al.: The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol 2003, 112:190–195.PubMedCrossRefGoogle Scholar
  25. 25.
    Viquez OM, Summer CG, Dodo HW: Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2. J Allergy Clin Immunol 2001, 107:713–717.This study provided information on the first genomic sequence of a peanut allergen gene in our laboratory. A fragment of this sequence is being used in our protocol to silence the peanut allergen Ara h 2.PubMedCrossRefGoogle Scholar
  26. 26.
    Rabjohn P, Helm EM, Stanley JS, et al.: Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 1999, 103:535–542.PubMedGoogle Scholar
  27. 27.
    Viquez OM, Konan NK, Dodo HW: Genomic organization of peanut allergen gene, Ara h 3. Mol Immunol 2004, 41:1235–1240.PubMedCrossRefGoogle Scholar
  28. 28.
    Dodo HW, Viquez OM, Maleki S, Konan K: cDNA clone of a putative peanut (Arachis hypogaea L.) trypsin inhibitor has homology with peanut allergens Ara h 3 and Ara h 4. J Agric Food Chem 2004, 10:1404–1409.CrossRefGoogle Scholar
  29. 29.
    Miyao A, Tanaka K, Muraka K, et al.: Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 2003, 15:1771–1780.PubMedCrossRefGoogle Scholar
  30. 30.
    Terada R, Urawa H, Inagaki Y, et al.: Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 2002, 20:1030–1034.PubMedCrossRefGoogle Scholar
  31. 31.
    Zamecnik PC, Stephenson ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 1978, 75:280–284.PubMedCrossRefGoogle Scholar
  32. 32.
    Napolis C, Lemieux C, Jorgensen R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant 2 1990, 279–289.Google Scholar
  33. 33.
    van der Krol AR, Mur LA, Beld M, et al.: Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990, 2:291–299.PubMedCrossRefGoogle Scholar
  34. 34.
    Fire A, Xu S, Montgomery MK, et al.: Potent and specific interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806–811.PubMedCrossRefGoogle Scholar
  35. 35.
    Waterhouse PM, Wang MB, Finnegan EJ: Role of short RNAs in gene silencing. Trends Plant Sci 2001, 6:297–301.PubMedCrossRefGoogle Scholar
  36. 36.
    Lowenstein H, Sparholt SH, Klysner SS, et al.: The significance of isoallergenic variations in present and future specific immunotherapy. Int Arch Allergy Immunol 1995, 107:285–289.PubMedGoogle Scholar
  37. 37.
    Lagares A, Puerta L, Caraballo L: Polymorphism in allergens. Biomedica 2002, 22:51–62.PubMedGoogle Scholar
  38. 38.
    Becker WM: Characterization of Ara h1 by two-dimensional electrophoresis Immunoblot and recombinant techniques: new digestion experiments with peanuts imitating the gastrointestinal tract. Int Arch Allergy Immunol 1997, 113:118–121.PubMedCrossRefGoogle Scholar
  39. 39.
    Chatel JM, Bernard H, Orson FM: 2003 Isolation and characterization of two complete Ara h2 isoforms cDNA. Int Arch Allergy Immunol 2003, 131:14–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role of a bidentale ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363–366.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharp PA: RNA interference. Genes Dev 2001, 15:188–200.CrossRefGoogle Scholar
  42. 42.
    Meins F: RNA degradation and models for post-transcriptional gene silencing. Plant Mol Biol 2000, 43:261–273.PubMedCrossRefGoogle Scholar
  43. 43.
    Hammond SM, Berstein E, Beach D, Hannon GJ: An RNAdirected nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature 2000, 404:293–296.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsuhara I, Shirasawa-Seo N, Iwai T, et al.: Release from posttranscriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 2002, 160:343–352.PubMedGoogle Scholar
  45. 45.
    Stoutjesdijk PA, Singh SP, Liu Q, et al.: hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 2002, 129:1723–1731.The hpRNA construct allows stable silencing phenotyping in the plant progeny. Stable inheritance is a critical point in the development of the allergen-free peanut.PubMedCrossRefGoogle Scholar
  46. 46.
    Wesley SV, Helliwell CA, Smith NA, et al.: Construct design for efficient, effective high-throughput gene silencing in plants. Plant J 2001, 27:581–590.Generic vector for efficient silencing phenotype in the progeny.PubMedCrossRefGoogle Scholar
  47. 47.
    Ozias-Akins P, Schnall JA, Anderson WF, et al.: Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 1993, 93:185–194.CrossRefGoogle Scholar
  48. 48.
    Murashige T, Skoog F: A revised medium for raid growth and bioassays with tobacco tissue culture. Plant Physiol 1962, 15:473–497.CrossRefGoogle Scholar
  49. 49.
    Egnin M, Mora A, Prakash CS: Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cell Dev Biol Plant 1998, 34:310–318.PubMedGoogle Scholar
  50. 50.
    Khandelwal A, Vally HJM, Geetha N, et al.: Engineering hemagglutinin (H) protein of rinderpest virus into peanut (Arachis hypogaea L.) as a possible source of vaccine. Plant Sci 2003, 165:77–84.CrossRefGoogle Scholar
  51. 51.
    Mansur EA, Lacorte C, de Freitas VG, et al.: 1993 Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci 1993, 89:93–99.CrossRefGoogle Scholar
  52. 52.
    Knol EF, Wensing M, Vlooswijk R, et al.: Relevance of Ara h1, Ara h2, and Ara h3 in peanut allergic patients, as determined by IgE-Western-blotting, basophil histamine release, and intracutaneous testing: Ara h2 is the most important peanut allergen. J Allergy Clin Immunol 2003, 111:194.CrossRefGoogle Scholar
  53. 53.
    Konan KN, Viquez OM, Dodo HM: Towards the development of a hypoallergenic peanut through genetic transformation. Appl Biotech Food Sci Pol 2003, 1:159–168.Preliminary data for proving the concept of silencing peanut allergen genes.Google Scholar
  54. 54.
    Benfey PN, Ren L, Chua NH: Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 1990, 9:1677–1684.PubMedGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Hortense Dodo
    • 1
  • Koffi Konan
    • 1
  • Olga Viquez
    • 1
  1. 1.Food Biotechnology Laboratory, Department of Food & Animal SciencesAlabama A&M UniversityNormalUSA

Personalised recommendations