Current Allergy and Asthma Reports

, Volume 5, Issue 5, pp 388–393 | Cite as

Structural biology of allergens

  • Wayne R. Thomas
  • Belinda J. Hales
  • Wendy-Anne Smith


Major allergens may have special aerobiological properties and allergenic structures. It would also be instructive to consider the properties of nonallergens and nonallergenic responses. In some cases, nonallergenic responses appear to result from a lack of antigenicity and in others from regulation. Proteolytic activity has been proposed as an adjuvant for allergenicity, but lipid binding is far more common and is found for more than 50% of the major allergens. Such structures can enhance allergenicity via Toll-like receptor (TLR) or CD1 pathways. TLR signaling can enhance both Th1 and Th2 responses and be induced by peptides as well as nonproteinaceous ligands.


Cysteine Protease Allergy Clin Immunol Pollen Allergen Major Allergen Mite Allergen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Aalberse RC: Structural biology of allergens. J Allergy Clin Immunol 2000, 106:228–238. Systematic analysis of the structure of allergens.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas WR, Smith WA, Hales BJ, et al.: Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol 2002, 129:1–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanier MT, Millat G: Structure and function of the NPC2 protein. Biochim Biophys Acta 2004, 1685:14–21.PubMedGoogle Scholar
  4. 4.
    Mothes N, Horak F, Valenta R: Transition from a botanical to a molecular classification in tree pollen allergy: implications for diagnosis and therapy. Int Arch Allergy Immunol 2004, 135:357–373.PubMedCrossRefGoogle Scholar
  5. 5.
    Mogensen JE, Wimmer R, Larsen JN, et al.: The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 2002, 277:23684–23692.PubMedCrossRefGoogle Scholar
  6. 6.
    Fritsch R, Bohle B, Vollmann U, et al.: Bet v 1, the major birch pollen allergen, and Mal d 1, the major apple allergen, cross-react at the level of allergen-specific T helper cells. J Allergy Clin Immunol 1998, 102:679–686.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakamura Y, Takagi S, Suzuki M, et al.: Survival of memory T cells specific for Japanese cypress pollen allergen is maintained by cross-stimulation of putative pectate lyases from other plants. Allergy 2001, 56:385–392.PubMedCrossRefGoogle Scholar
  8. 8.
    Rodriguez R, Villalba M, Monsalve RI, Batanero E: The spectrum of olive pollen allergens. Int Arch Allergy Immunol 2001, 125:185–195.PubMedCrossRefGoogle Scholar
  9. 9.
    Gadermaier G, Dedic A, Obermeyer G, et al.: Biology of weed pollen allergens. Curr Allergy Asthma Rep 2004, 4:391–400.PubMedGoogle Scholar
  10. 10.
    Arruda LK, Ferriani VP, Vailes LD, et al.: Cockroach allergens: environmental distribution and relationship to disease. Curr Allergy Asthma Rep 2001, 1:466–473.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaiser L, Gronlund H, Sandalova T, et al.: The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J Biol Chem 2003, 278:37730–37735. The major cat allergen Fel d 1 is a uteroglobin.PubMedCrossRefGoogle Scholar
  12. 12.
    Karn RC, Laukaitis CM: Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function. Biochemistry 2003, 42:7162–7170.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheong N, Soon SC, Ramos JD, et al.: Lack of human IgE cross-reactivity between mite allergens Blo t 1 and Der p 1. Allergy 2003, 58:912–920.PubMedCrossRefGoogle Scholar
  14. 14.
    Mora C, Flores I, Montealegre F, Diaz A: Cloning and expression of Blo t 1, a novel allergen from the dust mite Blomia tropicalis, homologous to cysteine proteases. Clin Exp Allergy 2003, 33:28–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Holt DC, Fischer K, Pizzutto SJ, et al.: A multigene family of inactivated cysteine proteases in Sarcoptes scabiei. J Invest Dermatol 2004, 123:240–241.PubMedCrossRefGoogle Scholar
  16. 16.
    Aalberse RC: Specific IgE and IgG responses in atopic versus nonatopic subjects. Am J Respir Crit Care Med 2000, 162:S124–127.PubMedGoogle Scholar
  17. 17.
    Tame A, Sakiyama Y, Kobayashi I, et al.: Differences in titres of IgE, IgG4 and other IgG subclass anti-Der p 2 antibodies in allergic and non-allergic patients measured with recombinant allergen. Clin Exp Allergy 1996, 26:43–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Noguchi E, Shibasaki M, Isoyama S, Takita H: Comparisons of IgE, IgG, and IgG4 responsiveness to Dermatophagoides farinae in children by immunoblotting. Allergy 1996, 51:907–913.PubMedCrossRefGoogle Scholar
  19. 19.
    Platts-Mills TA, von Maur RK, Ishizaka K, et al.: IgA and IgG anti-ragweed antibodies in nasal secretions: quantitative measurements of antibodies and correlation with inhibition of histamine release. J Clin Invest 1976, 57:1041–1050.PubMedCrossRefGoogle Scholar
  20. 20.
    Platts-Mills T, Vaughan J, Squillace S, et al.: Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 2001, 357:752–756.PubMedCrossRefGoogle Scholar
  21. 21.
    Jarolim E, Rumpold H, Endler AT, et al.: IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of Betula verrucosa. Allergy 1989, 44:385–395.PubMedCrossRefGoogle Scholar
  22. 22.
    Epton MJ, Smith W, Hales BJ, et al.: Non-allergenic antigen in allergic sensitization: responses to the mite ferritin heavy chain antigen by allergic and non-allergic subjects. Clin Exp Allergy 2002, 32:1341–1347.PubMedCrossRefGoogle Scholar
  23. 23.
    Takai T, Kato T, Sakata Y, et al.: Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Biochem Biophys Res Commun 2005, 328:944–952.PubMedCrossRefGoogle Scholar
  24. 24.
    Maruo K, Akaike T, Ono T, et al.: Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J Allergy Clin Immunol 1997, 100:253–260.PubMedCrossRefGoogle Scholar
  25. 25.
    Gough L, Sewell HF, Shakib F: The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin Exp Allergy 2001, 31:1594–1598.PubMedCrossRefGoogle Scholar
  26. 26.
    Gough L, Campbell E, Bayley D, et al.: Proteolytic activity of the house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model. Clin Exp Allergy 2003, 33:1159–1163.PubMedCrossRefGoogle Scholar
  27. 27.
    Chambers L, Brown A, Pritchard DI, et al.: Enzymatically active papain preferentially induces an allergic response in mice. Biochem Biophys Res Commun 1998, 253:837–840.PubMedCrossRefGoogle Scholar
  28. 28.
    Pollock KG, McNeil KS, Mottram JC, et al.: The Leishmania mexicana cysteine protease, CPB2.8, induces potent Th2 responses. J Immunol 2003, 170:1746–1753.PubMedGoogle Scholar
  29. 29.
    McCall C, Hunter S, Stedman K, et al.: Characterization and cloning of a major high molecular weight house dust mite allergen (Der f 15) for dogs. Vet Immunol Immunopathol 2001, 78:231–247.PubMedCrossRefGoogle Scholar
  30. 30.
    Asokananthan N, Graham PT, Fink J, et al.: Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002, 168:3577–3585.PubMedGoogle Scholar
  31. 31.
    Faveeuw C, Angeli V, Fontaine J, et al.: Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 2002, 169:906–912.PubMedGoogle Scholar
  32. 32.
    Mazzoni A, Segal DM: Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 2004, 75:721–730.PubMedCrossRefGoogle Scholar
  33. 33.
    Piggott DA, Eisenbarth SC, Xu L, et al.: MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 2005, 115:459–467.PubMedCrossRefGoogle Scholar
  34. 34.
    Goodridge HS, Marshall FA, Else KJ, et al.: Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J Immunol 2005, 174:284–293.PubMedGoogle Scholar
  35. 35.
    Brewer JM, Pollock KG, Tetley L, Russell DG: Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J Immunol 2004, 173:6143–6150.PubMedGoogle Scholar
  36. 36.
    Lazarus R, Raby BA, Lange C, et al.: Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 2004, 170:594–600.PubMedCrossRefGoogle Scholar
  37. 37.
    Tantisira K, Klimecki WT, Lazarus R, et al.: Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun 2004, 5:343–346.PubMedCrossRefGoogle Scholar
  38. 38.
    Redecke V, Hacker H, Datta SK, et al.: Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004, 172:2739–2743.PubMedGoogle Scholar
  39. 39.
    Chisholm D, Libet L, Hayashi T, Horner AA: Airway peptidoglycan and immunostimulatory DNA exposures have divergent effects on the development of airway allergen hypersensitivities. J Allergy Clin Immunol 2004, 113:448–454.PubMedCrossRefGoogle Scholar
  40. 40.
    Ogawa T, Asai Y, Hashimoto M, Uchida H: Bacterial fimbriae activate human peripheral blood monocytes utilizing TLR2, CD14 and CD11a/CD18 as cellular receptors. Eur J Immunol 2002, 32:2543–2550.PubMedCrossRefGoogle Scholar
  41. 41.
    Galdiero M, Finamore E, Rossano F, et al.: Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun 2004, 72:1204–1209.PubMedCrossRefGoogle Scholar
  42. 42.
    Epelman S, Stack D, Bell C, et al.: Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J Immunol 2004, 173:2031–2040.PubMedGoogle Scholar
  43. 43.
    Didierlaurent A, Ferrero I, Otten LA, et al.: Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 2004, 172:6922–6930.PubMedGoogle Scholar
  44. 44.
    Mandal AK, Zhang Z, Ray R, et al.: Uteroglobin represses allergen-induced inflammatory response by blocking PGD2 receptor-mediated functions. J Exp Med 2004, 199:1317–1330.PubMedCrossRefGoogle Scholar
  45. 45.
    Hammad H, de Heer HJ, Soullie T, et al.: Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol 2003, 171:3936–3940.PubMedGoogle Scholar
  46. 46.
    Jia HP, Kline JN, Penisten A, et al.: Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 2004, 287:L428-L437.PubMedCrossRefGoogle Scholar
  47. 47.
    Gruber A, Mancek M, Wagner H, et al.: Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem 2004, 279:28475–28482. Describes the structure of the TLR4 co-receptor modeled on the group 2 house dust mite allergen.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Wayne R. Thomas
    • 1
  • Belinda J. Hales
    • 1
  • Wendy-Anne Smith
    • 1
  1. 1.Centre for Child Health Research, Telethon Institute for Child Health ResearchThe University of Western AustraliaWest PerthAustralia

Personalised recommendations