Skip to main content

Advertisement

Log in

Oral tolerance and gut-oriented immune response to dietary proteins

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Dietary proteins induce both a local immune response characterized by IgA production and systemic immune response characterized by the production of TH2/TH3 cytokines. By influencing the class of immune response, the gut enhances the efficacy of immunity against proteins that enter the body through the diet while, at the same time, ensuring its own safety. This article reviews and summarizes the field of "oral tolerance," with emphasis on recent advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dakin R: Remarks on a cutaneous affection, produced by certain poisonous vegetables. Am J Med Sci 1829, 4:98–100.

    Article  Google Scholar 

  2. Wells HG, Osborne TB: The biological reactions of the vegetable proteins. J Infect Dis 1911, 8:66–124.

    CAS  Google Scholar 

  3. Chase MW: Inhibition of experimental drug allergy by prior feeding of the sensitivity agent. Proc Soc Exp Biol Med 1946, 61:257–259.

    CAS  Google Scholar 

  4. Weiner HL: Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997, 7:335–344.

    Article  Google Scholar 

  5. Neutra MR, Pringault E, Kraehenbuhl JP: Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 1996, 14:275–300.

    Article  PubMed  CAS  Google Scholar 

  6. Kelsall BL, Strober W: Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J Exp Med 1996, 183:237–247.

    Article  PubMed  CAS  Google Scholar 

  7. Kelsall B, Strober W: Gut-associated lymphoid tissue. In Mucosal Immunology. Edited by Ogra P, Mestecky J, Lamm M, et al. San Diego: Academic Press; 1999:293–317.

    Google Scholar 

  8. Zeitz M, Schieferdecker HL, Ullrich R, et al.: Phenotype and function of lamina propria T lymphocytes. Immunol Res 1991, 10:199–206.

    PubMed  CAS  Google Scholar 

  9. James SP, Kwan WC, Sneller MC: T cells in inductive and effector compartments of the intestinal mucosal immune system of nonhuman primates differ in lymphokine mRNA expression, lymphokine utilization, and regulatory function. J Immunol 1990, 144:1251–1256.

    PubMed  CAS  Google Scholar 

  10. Fujihashi K, McGhee JR, Kweon MN, et al.: Gamma/delta T cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med 1996, 183:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  11. Jarry A, Cerf-Bensussan N, Brousse N, et al.: Subsets of CD3+ (T cell receptor alpha/beta or gamma/delta) and CD3-lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 1990, 20:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  12. Shimoda M, Inoue Y, Azuma N, Kanno C: Local antibody response in Peyer’s patches to the orally administered dietary protein antigen. Biosci Biotechnol Biochem 1999, 63:2123–2129.

    Article  PubMed  CAS  Google Scholar 

  13. Golovkina TV, Shlomchik M, Hannum L, Chervonsky A: Organogenic role of B lymphocytes in mucosal immunity. Science 1999, 286:1965–1968.An elegant study demonstrating the role of B cells in the organogenesis of Peyer’s patches, using scanning electron microscopy.

    Article  PubMed  CAS  Google Scholar 

  14. Jones BD, Ghori N, Falkow S: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 1994, 180:15–23.

    Article  PubMed  CAS  Google Scholar 

  15. Rescigno M, Urbano M, Valzasina B, et al.: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001, 2:361–367.A very interesting finding that shows the dendritic cells can crawl between the epithelial cells and sample intraluminal pathogens. Since the gut is always colonized with bacteria, dendritic cells should be sampling them continuously, leading to intestinal immunity that prevents the systemic spread of the microorganisms.

    Article  PubMed  CAS  Google Scholar 

  16. Laiping So A, Pelton-Henrion K, Small G, et al.: Antigen uptake and trafficking in human intestinal epithelial cells. Dig Dis Sci 2000, 45:1451–1461.

    Article  Google Scholar 

  17. Alpan O, Rudomen G, Matzinger P: The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. J Immunol 2001, 166:4843–4852.This study demonstrates the importance of dendritic cells in the induction of gut-oriented immune responses to oral antigens. It is also a thorough review of the oral tolerance field, with experimental demonstration of many of its characteristics.

    PubMed  CAS  Google Scholar 

  18. Chen Y, Inobe J, Reinhard M, et al.: Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995, 376:177–180.

    Article  PubMed  CAS  Google Scholar 

  19. Lamm ME: Epithelial disposition of antigen. Aliment Pharmacol Ther 1997, 11(suppl 3):40–44.

    PubMed  Google Scholar 

  20. Hershberg RM, Mayer LE: Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol Today 2000, 21:123–128.

    Article  PubMed  CAS  Google Scholar 

  21. Fuchs EJ, Matzinger P: B cells turn off virgin but not memory T cells. Science 1992, 258:1156–1159.

    Article  PubMed  CAS  Google Scholar 

  22. Gutgemann I, Fahrer AM, Altman JD, et al.: Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998, 8:667–673.The only study in the field of oral tolerance using MHC class II tetramers to tract antigen specific cells in the systemic circulation after antigen feeding.

    Article  PubMed  CAS  Google Scholar 

  23. Desvignes C, Bour H, Nicholas JF, Kaiserlain D: Lack of oral tolerance but oral priming for contact sensitivity to dinitrofluorobenzene in major histocompatibility antigen deficient mice and in CD4 T cell depleted mice. Eur J Immunol 1996, 26:1756–1761.

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Kuchroo VK, Inobe J, et al.: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994, 265:1237–1240.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson HS, Staines NA: Could specific oral tolerance be a therapy for autoimmune disease? Immunol Today 1990, 11:396–399.

    Article  PubMed  CAS  Google Scholar 

  26. Vives J, Parks DE, Weigle WO: Immunologic unresponsiveness after gastric administration of human gamma-globulin: antigen requirements and cellular parameters. J Immunol 1980, 125:1811–1816.

    PubMed  CAS  Google Scholar 

  27. Melamed D, Friedman A: In vivo tolerization of Th1 lymphocytes following a single feed with ovalbumin: anergy in the absence of suppression. Eur J Immunol 1994, 24:1974–1981.

    Article  PubMed  CAS  Google Scholar 

  28. Strobel S, Ferguson A: Immune responses to fed protein antigens in mice. 3. Systemic tolerance or priming is related to age at which antigen is first encountered. Pediatr Res 1984, 18:588–594.

    Article  PubMed  CAS  Google Scholar 

  29. Miller A, Lider O, Abramsky O, Weiner HL: Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur J Immunol 1994, 24:1026–1032.

    Article  PubMed  CAS  Google Scholar 

  30. Sudo N, Sawamura S, Tanaka K, et al.: The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997, 159:1739–1745.

    PubMed  CAS  Google Scholar 

  31. Neish AS, Gewirtz AT, Zeng H, et al.: Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 2000, 289:1560–1563.An elegant study demonstrating the importance of the interaction between the host and microorganisms in oral tolerance.

    Article  PubMed  CAS  Google Scholar 

  32. Strobel S, Fergusson A: Persistence of oral tolerance in mice fed ovalbumin is different for humoral and cell mediated immune responses. Immunology 1987, 60:317–318.

    PubMed  CAS  Google Scholar 

  33. Melamed D, Friedman A: Modification of the immune response by oral tolerance: antigen requirements and interaction with immunogenic stimuli. Cell Immunol 1993, 146:412–420.

    Article  PubMed  CAS  Google Scholar 

  34. Miller A, Lider O, al-Sabbagh A, Weiner HL: Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. V. Hierarchy of suppression by myelin basic protein from different species. J Neuroimmunol 1992, 39:243–250.

    Article  PubMed  CAS  Google Scholar 

  35. Miller A, Lider O, Weiner HL: Antigen-driven bystander suppression after oral administration of antigens. J Exp Med 1991, 174:791–798.

    Article  PubMed  CAS  Google Scholar 

  36. Homann D, Holz A, Bot A, et al.: Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity 1999, 11:463–472.This is one of the first studies in oral tolerance that suggests APCs could be key to the induction of bystander suppression.

    Article  PubMed  CAS  Google Scholar 

  37. Sayegh MH, Khoury SJ, Hancock WW, et al.: Mechanisms of oral tolerance by MHC peptides. Ann N Y Acad Sci 1996, 778:338–345.

    Article  PubMed  CAS  Google Scholar 

  38. Hancock WW, Polanski M, Zhang J, et al.: Suppression of insulitis in non-obese diabetic mice by oral insulin administration is associated with selective expression of IL-4 and IL-10, transforming growth factor-beta and prostaglandin-E. Am J Pathol 1995, 147:1193–1199.

    PubMed  CAS  Google Scholar 

  39. Fukaura H, Kent SC, Pietrusewicz MJ, et al.: Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996, 98:70–77.

    PubMed  CAS  Google Scholar 

  40. Weiner HL, Komagata Y: Oral tolerance and the treatment of rheumatoid arthritis. Springer Semin Immunopathol 1998, 20:289–308.

    Article  PubMed  CAS  Google Scholar 

  41. Shida K, Hachimura S, Ametani A, et al.: Serum IgE response to orally ingested antigen: a novel IgE response model with allergen-specific T-cell receptor transgenic mice. J Allergy Clin Immunol 2000, 105:788–795.

    Article  PubMed  CAS  Google Scholar 

  42. Ito K, Inagaki-Ohara K, Murosaki S, et al.: Murine model of IgE production with a predominant Th2-response by feeding protein antigen without adjuvants. Eur J Immunol 1997, 27:3427–3437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpan, O. Oral tolerance and gut-oriented immune response to dietary proteins. Curr Allergy Asthma Rep 1, 572–577 (2001). https://doi.org/10.1007/s11882-001-0067-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-001-0067-6

Keywords

Navigation