Annals of Dyslexia

, Volume 66, Issue 3, pp 337–360 | Cite as

Examining the relationship between home literacy environment and neural correlates of phonological processing in beginning readers with and without a familial risk for dyslexia: an fMRI study

  • Sara J. Powers
  • Yingying Wang
  • Sara D. Beach
  • Georgios D. Sideridis
  • Nadine GaabEmail author


Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy environment (HLE) and neural correlates of reading has been identified in typically developing children, yet it remains unclear whether similar effects are observable in children with a genetic predisposition for dyslexia. Understanding environmental contributions is important given that we do not understand why some genetically at-risk children do not develop dyslexia. Here, we investigate for the first time the relationship between HLE and the neural correlates of phonological processing in beginning readers with (FHD+, n = 29) and without (FHD−, n = 21) a family history of developmental dyslexia. We further controlled for socioeconomic status to isolate the neurobiological mechanism by which HLE affects reading development. Group differences revealed stronger correlation of HLE with brain activation in the left inferior/middle frontal and right fusiform gyri in FHD− compared to FHD+ children, suggesting greater impact of HLE on manipulation of phonological codes and recruitment of orthographic representations in typically developing children. In contrast, activation in the right precentral gyrus showed a significantly stronger correlation with HLE in FHD+ compared to FHD− children, suggesting emerging compensatory networks in genetically at-risk children. Overall, our results suggest that genetic predisposition for dyslexia alters contributions of HLE to early reading skills before formal reading instruction, which has important implications for educational practice and intervention models.


Dyslexia fMRI Home literacy environment Phonological processing 



This research is supported by the National Institute of Child Health and Human Development under grant 1R01HD065762-05.


  1. Adams, M. J. (1990). Beginning to read: learning and thinking about print. Cambridge: MIT Press.Google Scholar
  2. Barquero, L. A., Davis, N., & Cutting, L. E. (2014). Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PloS One, 9(1), e83668.CrossRefGoogle Scholar
  3. Bentler, P. M. (2007). Covariance structure models for maximal reliability of unit-weighted composites. In S. Lee (Ed.), Handbook of computing and statistics with applications: Vol. 1. Handbook of latent variable and related models (pp. 1–19). New York: Elsevier.Google Scholar
  4. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.CrossRefGoogle Scholar
  5. Booth, J. R., Bebko, G., Burman, D. D., & Bitan, T. (2007). Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia, 45(4), 775–783.CrossRefGoogle Scholar
  6. Brambati, S. M., Termine, C., Ruffino, M., Danna, M., Lanzi, G., Stella, G., et al. (2006). Neuropsychological deficits and neural dysfunction in familial dyslexia. Brain Research, 1113(1), 174–185.CrossRefGoogle Scholar
  7. Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8.Google Scholar
  8. Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15(3), 275–290.CrossRefGoogle Scholar
  9. Burgess, S. R., Hecht, S. A., & Lonigan, C. J. (2002). Relations of the home literacy environment (HLE) to the development of reading‐related abilities: a one-year longitudinal study. Reading Research Quarterly, 37(4), 408–426.CrossRefGoogle Scholar
  10. Bus, A. G., Van Ijzendoorn, M. H., & Pellegrini, A. D. (1995). Joint book reading makes for success in learning to read: a meta-analysis on intergenerational transmission of literacy. Review of Educational Research, 65(1), 1–21.CrossRefGoogle Scholar
  11. Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47(10), 1041–1050.CrossRefGoogle Scholar
  12. Christopher, M. E., Hulslander, J., Byrne, B., Samuelsson, S., Keenan, J. M., Pennington, B., et al. (2015). Genetic and environmental etiologies of the longitudinal relations between prereading skills and reading. Child Development, 86(2), 342–361.CrossRefGoogle Scholar
  13. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefGoogle Scholar
  14. Cohen, L., Martinaud, O., Lemer, C., Lehericy, S., Samson, Y., Obadia, M., et al. (2003). Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cerebral Cortex, 13(12), 1313–1333.CrossRefGoogle Scholar
  15. Cohen, P., Cohen, J., Aiken, L. S., & West, S. G. (1999). The problem of units and the circumstance for POMP. Multivariate Behavioral Research, 34(3), 315–346.CrossRefGoogle Scholar
  16. Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676.CrossRefGoogle Scholar
  17. De Jong, P. F., & Leseman, P. P. (2001). Lasting effects of home literacy on reading achievement in school. Journal of School Psychology, 39(5), 389–414.CrossRefGoogle Scholar
  18. DeFries, J. C., & Alarcón, M. (1996). Genetics of specific reading disability. Mental Retardation and Developmental Disabilities Research Reviews, 2(1), 39–47.CrossRefGoogle Scholar
  19. Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262.CrossRefGoogle Scholar
  20. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.CrossRefGoogle Scholar
  21. Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Research, 1356, 73–84.CrossRefGoogle Scholar
  22. Dilnot, J., Hamilton, L., Maughan, B., & Snowling, M. J. (2016). Child and environmental risk factors predicting readiness for learning in children at high risk of dyslexia. Development and Psychopathology, FirstView, 1–10.Google Scholar
  23. Drakesmith, M., El-Deredy, W., & Welbourne, S. (2015). Differential phonological and semantic modulation of neurophysiological responses to visual word recognition. Neuropsychobiology, 72(1), 46–56.CrossRefGoogle Scholar
  24. Ehri, L. C. (2005). Development of sight word reading: phases and findings.Google Scholar
  25. Eilam-Stock, T., Xu, P., Cao, M., Gu, X., Van Dam, N. T., Anagnostou, E., et al. (2014). Abnormal autonomic and associated brain activities during rest in autism spectrum disorder. Brain, 137(1), 153–171.CrossRefGoogle Scholar
  26. Frijters, J. C., Barron, R. W., & Brunello, M. (2000). Direct and mediated influences of home literacy and literacy interest on prereaders’ oral vocabulary and early written language skill. Journal of Educational Psychology, 92(3), 466.CrossRefGoogle Scholar
  27. Gaab, N., Gabrieli, J. D., & Glover, G. H. (2007a). Assessing the influence of scanner background noise on auditory processing. I. An fMRI study comparing three experimental designs with varying degrees of scanner noise. Human Brain Mapping, 28(8), 703–720.CrossRefGoogle Scholar
  28. Gaab, N., Gabrieli, J. D., & Glover, G. H. (2007b). Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design. Human Brain Mapping, 28(8), 721–732.CrossRefGoogle Scholar
  29. Gaab, N., Gabrieli, J. D., & Glover, G. H. (2008). Resting in peace or noise: scanner background noise suppresses default‐mode network. Human Brain Mapping, 29(7), 858–867.CrossRefGoogle Scholar
  30. Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213–1217.CrossRefGoogle Scholar
  31. Galaburda, A. M., Sherman, G. F., & Rosen, G. D. (1985). Developmental dyslexia: four consecutive patients with cortical anomahes. Reading, 6, 1.8.Google Scholar
  32. Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19, 72–91.CrossRefGoogle Scholar
  33. Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: a capsule review of heritability estimates.Google Scholar
  34. Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73.CrossRefGoogle Scholar
  35. Hair, N., Hanson, J., Pollak, S., & Wolfe, B. (2013). Socioeconomic differences and academic achievement: insights from the developing brain. Washington: In APPAM Annual Fall Research Conference.Google Scholar
  36. Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott, M. R., et al. (1999). Sparse” temporal sampling in auditory fMRI. Human Brain Mapping, 7(3), 213–223.CrossRefGoogle Scholar
  37. Hamilton, L. (2013). The role of the home literacy environment in the early literacy development of children at family-risk of dyslexia.Google Scholar
  38. Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., et al. (2013). Family poverty affects the rate of human infant brain growth.Google Scholar
  39. Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361–366.CrossRefGoogle Scholar
  40. Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J. L., et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences, 104(10), 4234–4239.CrossRefGoogle Scholar
  41. Hoff, E. (2003). The specificity of environmental influence: socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 1368–1378.CrossRefGoogle Scholar
  42. Hoff-Ginsberg, E., & Tardif, T. (1995). Socioeconomic status and parenting.Google Scholar
  43. Holland, S. K., Plante, E., Byars, A. W., Strawsburg, R. H., Schmithorst, V. J., & Ball, W. S. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage, 14(4), 837–843.CrossRefGoogle Scholar
  44. Horowitz-Kraus, T., Vannest, J. J., & Holland, S. K. (2013). Overlapping neural circuitry for narrative comprehension and proficient reading in children and adolescents. Neuropsychologia, 51(13), 2651–2662.CrossRefGoogle Scholar
  45. Humphries, C., Willard, K., Buchsbaum, B., & Hickok, G. (2001). Role of anterior temporal cortex in auditory sentence comprehension: an fMRI study. Neuroreport, 12(8), 1749–1752.CrossRefGoogle Scholar
  46. Hutton, J. S., Horowitz-Kraus, T., Mendelsohn, A. L., DeWitt, T., & Holland, S. K. (2015). Home reading environment and brain activation in preschool children listening to stories. Pediatrics, 136(3), 466–478.CrossRefGoogle Scholar
  47. Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.Google Scholar
  48. Jacobs, J., Hawco, C., Kobayashi, E., Boor, R., LeVan, P., Stephani, U., et al. (2008). Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. NeuroImage, 40(2), 601–614.CrossRefGoogle Scholar
  49. Jednoróg, K., Altarelli, I., Monzalvo, K., Fluss, J., Dubois, J., Billard, C., et al. (2012). The influence of socioeconomic status on children’s brain structure. PloS One, 7(8), e42486.CrossRefGoogle Scholar
  50. Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochemical and Biophysical Research Communications, 452(2), 236–243.CrossRefGoogle Scholar
  51. Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J., & Farah, M. J. (2013). Associations between children's socioeconomic status and prefrontal cortical thickness. Developmental Science, 16(5), 641–652.CrossRefGoogle Scholar
  52. Levy, B. A., Gong, Z., Hessels, S., Evans, M. A., & Jared, D. (2006). Understanding print: early reading development and the contributions of home literacy experiences. Journal of Experimental Child Psychology, 93(1), 63–93.CrossRefGoogle Scholar
  53. Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428.CrossRefGoogle Scholar
  54. Lonigan, C. J. (1994). Reading to preschoolers exposed: is the emperor really naked? Developmental Review, 14(3), 303–323.CrossRefGoogle Scholar
  55. Lonigan, C. J., Burgess, S. R., & Anthony, J. L. (2000). Development of emergent literacy and early reading skills in preschool children: evidence from a latent-variable longitudinal study. Developmental Psychology, 36(5), 596.CrossRefGoogle Scholar
  56. Lundberg, I., Olofsson, Å., & Wall, S. (1980). Reading and spelling skills in the first school years predicted from phonemic awareness skills in kindergarten. Scandinavian Journal of Psychology, 21(1), 159–173.CrossRefGoogle Scholar
  57. Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53(1), 1–14.CrossRefGoogle Scholar
  58. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.CrossRefGoogle Scholar
  59. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12(5), 419–446.CrossRefGoogle Scholar
  60. Niklas, F., & Schneider, W. (2013). Home literacy environment and the beginning of reading and spelling. Contemporary Educational Psychology, 38(1), 40–50.CrossRefGoogle Scholar
  61. Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773–778.CrossRefGoogle Scholar
  62. Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental Science, 15(4), 516–527.CrossRefGoogle Scholar
  63. Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D. (2006). Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science, 9(6), 642–654.CrossRefGoogle Scholar
  64. O'Brien, B. A., Wolf, M., & Lovett, M. W. (2012). A taxometric investigation of developmental dyslexia subtypes. Dyslexia, 18(1), 16–39.CrossRefGoogle Scholar
  65. Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roettinger, M., et al. (2006). Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping, 27(7), 562–571.CrossRefGoogle Scholar
  66. Ozernov-Palchik, O., Yu, X., Wang, Y., & Gaab, N. (2016). Lessons to be learned: How a comprehensive neurobiological framework of atypical reading development can inform educational practice. Current Opinion in Behavioral Sciences.Google Scholar
  67. Payne, A. C., Whitehurst, G. J., & Angell, A. L. (1994). The role of home literacy environment in the development of language ability in preschool children from low-income families. Early Childhood Research Quarterly, 9(3), 427–440.CrossRefGoogle Scholar
  68. Pennington, B. F., & Lefly, D. L. (2001). Early reading development in children at family risk for dyslexia. Child development, 816–833.Google Scholar
  69. Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283–307.CrossRefGoogle Scholar
  70. Pugh, K. R., Landi, N., Preston, J. L., Mencl, W. E., Austin, A. C., Sibley, D., et al. (2013). The relationship between phonological and auditory processing and brain organization in beginning readers. Brain and Language, 125(2), 173–183.CrossRefGoogle Scholar
  71. Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., et al. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34(6), 479–492.CrossRefGoogle Scholar
  72. Raizada, R. D., & Kishiyama, M. M. (2010). Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Frontiers in Human Neuroscience, 4(3).Google Scholar
  73. Raizada, R. D., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40(3), 1392–1401.CrossRefGoogle Scholar
  74. Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences, 109(6), 2156–2161.CrossRefGoogle Scholar
  75. Richards, T. L., & Berninger, V. W. (2008). Abnormal fMRI connectivity in children with dyslexia during a phoneme task: before but not after treatment. Journal of Neurolinguistics, 21(4), 294–304.CrossRefGoogle Scholar
  76. Richter, W., & Richter, M. (2003). The shape of the fMRI BOLD response in children and adults changes systematically with age. NeuroImage, 20(2), 1122–1131.CrossRefGoogle Scholar
  77. Rodriguez, E. T., & Tamis‐LeMonda, C. S. (2011). Trajectories of the home learning environment across the first 5 years: associations with children’s vocabulary and literacy skills at prekindergarten. Child Development, 82(4), 1058–1075.CrossRefGoogle Scholar
  78. Scarborough, H. S., & Dobrich, W. (1994). On the efficacy of reading to preschoolers. Developmental Review, 14(3), 245–302.CrossRefGoogle Scholar
  79. Scarborough, H. S., Dobrich, W., & Hager, M. (1991). Preschool literacy experience and later reading achievement. Journal of Learning Disabilities, 24(8), 508–511.CrossRefGoogle Scholar
  80. Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30, 475–503.CrossRefGoogle Scholar
  81. Schmitt, S. A., Simpson, A. M., & Friend, M. (2011). A longitudinal assessment of the home literacy environment and early language. Infant and Child Development, 20(6), 409–431.CrossRefGoogle Scholar
  82. Schulz, E., Maurer, U., van der Mark, S., Bucher, K., Brem, S., Martin, E., et al. (2008). Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence. NeuroImage, 41(1), 153–168.CrossRefGoogle Scholar
  83. Semel, E. M., Wiig, E. H., & Sabers, D. (1980). CELF: Clinical evaluation of language functions: CE Merrill.Google Scholar
  84. Sénéchal, M. (2006). Testing the home literacy model: parent involvement in kindergarten is differentially related to grade 4 reading comprehension, fluency, spelling, and reading for pleasure. Scientific Studies of Reading, 10(1), 59–87.CrossRefGoogle Scholar
  85. Sénéchal, M., & LeFevre, J. A. (2002). Parental involvement in the development of children’s reading skill: a five-year longitudinal study. Child Development, 73(2), 445–460.CrossRefGoogle Scholar
  86. Sénéchal, M., Lefevre, J. A., Thomas, E. M., & Daley, K. E. (1998). Differential effects of home literacy experiences on the development of oral and written language. Reading Research Quarterly, 33(1), 96–116.CrossRefGoogle Scholar
  87. Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55(9), 926–933.CrossRefGoogle Scholar
  88. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101–110.CrossRefGoogle Scholar
  89. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., et al. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, 95(5), 2636–2641.CrossRefGoogle Scholar
  90. Sideridis, G. D., Simos, P., Papanicolaou, A., & Fletcher, J. (2014). On the use of SEM for evaluating functional connectivity in the brain: sample size considerations. Educational and Psychological Measurement, 74, 733–758.CrossRefGoogle Scholar
  91. Siegel, L. S. (2006). Perspectives on dyslexia. Paediatrics & Child Health, 11(9), 581.Google Scholar
  92. Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74, 107–120.CrossRefGoogle Scholar
  93. Simos, P. G., Fletcher, J. M., Foorman, B. R., Francis, D. J., Castillo, E. M., Davis, R. N., et al. (2002). Brain activation profiles during the early stages of reading acquisition. Journal of Child Neurology, 17(3), 159–163.CrossRefGoogle Scholar
  94. Smith, S. S., & Dixon, R. G. (1995). Literacy concepts of low-and middle-class four-year-olds entering preschool. The Journal of Educational Research, 88(4), 243–253.CrossRefGoogle Scholar
  95. Stanovich, K. E., & West, R. F. (1989). Exposure to print and orthographic processing. Reading Research Quarterly, 402–433.Google Scholar
  96. Storch, S. A., & Whitehurst, G. J. (2001). The role of family and home in the literacy development of children from low‐income backgrounds. New Directions for Child and Adolescent Development, 2001(92), 53–72.CrossRefGoogle Scholar
  97. Swanson, M., Wolff, J., Elison, J., Gu, H., Hazlett, H., Botteron, K., et al. (2015). Splenium development and early spoken language in human infants. Developmental Science.Google Scholar
  98. Szaflarski, J. P., Holland, S. K., Schmithorst, V. J., & Byars, A. W. (2006). fMRI study of language lateralization in children and adults. Human Brain Mapping, 27(3), 202–212.CrossRefGoogle Scholar
  99. Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proceedings of the National Academy of Sciences, 100(5), 2860–2865.CrossRefGoogle Scholar
  100. Temple, E., Poldrack, R. A., Salidis, J., Deutsch, G. K., Tallal, P., Merzenich, M. M., et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport, 12(2), 299–307.CrossRefGoogle Scholar
  101. Thomason, M. E., Burrows, B. E., Gabrieli, J. D., & Glover, G. H. (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. NeuroImage, 25(3), 824–837.CrossRefGoogle Scholar
  102. Torppa, M., Poikkeus, A.-M., Laakso, M.-L., Eklund, K., & Lyytinen, H. (2006). Predicting delayed letter knowledge development and its relation to grade 1 reading achievement among children with and without familial risk for dyslexia. Developmental Psychology, 42(6), 1128.CrossRefGoogle Scholar
  103. Torppa, M., Poikkeus, A.-M., Laakso, M.-L., Tolvanen, A., Leskinen, E., Leppanen, P. H., et al. (2007). Modeling the early paths of phonological awareness and factors supporting its development in children with and without familial risk of dyslexia. Scientific Studies of Reading, 11(2), 73–103.CrossRefGoogle Scholar
  104. Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6(7), 767–773.CrossRefGoogle Scholar
  105. Van Der Lely, H. (2000). Verb agreement and tense test (VATT). Available from the author at the centre for developmental language disorders and cognitive neuroscience. London: University College London.Google Scholar
  106. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1994). Development of reading-related phonological processing abilities: new evidence of bidirectional causality from a latent variable longitudinal study. Developmental Psychology, 30(1), 73.CrossRefGoogle Scholar
  107. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). CTOPP: Comprehensive test of phonological processing: Pro-ed.Google Scholar
  108. Wagner, R. K., Torgesen, J. K., Rashotte, C. A., Hecht, S. A., Barker, T. A., Burgess, S. R., et al. (1997). Changing relations between phonological processing abilities and word-level reading as children develop from beginning to skilled readers: a 5-year longitudinal study. Developmental Psychology, 33(3), 468.CrossRefGoogle Scholar
  109. Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69(3), 848–872.CrossRefGoogle Scholar
  110. Wilke, M., Holland, S. K., Myseros, J. S., Schmithorst, V. J., & Ball, W. S., Jr. (2003). Functional magnetic resonance imaging in pediatrics. Neuropediatrics, 34(5), 225–233.CrossRefGoogle Scholar
  111. Wimmer, H., Schurz, M., Sturm, D., Richlan, F., Klackl, J., Kronbichler, M., et al. (2010). A dual-route perspective on poor reading in a regular orthography: an fMRI study. Cortex, 46(10), 1284–1298.CrossRefGoogle Scholar
  112. Wolf, M., & Denckla, M. B. (2005). Rapid automatized naming and rapid alternating stimulus tests (RAN/RAS). Austin: Pro-Ed.Google Scholar
  113. Woodcock, R. W. (1987). Woodcock reading mastery tests, revised: American Guidance Service Circle Pines, MN.Google Scholar
  114. World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
  115. Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cerebral Cortex, 20(3), 622–632.CrossRefGoogle Scholar

Copyright information

© The International Dyslexia Association 2016

Authors and Affiliations

  • Sara J. Powers
    • 1
    • 2
  • Yingying Wang
    • 1
    • 2
  • Sara D. Beach
    • 3
  • Georgios D. Sideridis
    • 1
    • 2
  • Nadine Gaab
    • 1
    • 2
    • 4
    • 5
    Email author
  1. 1.Division of Developmental Medicine, Department of MedicineBoston Children’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Speech and Hearing Bioscience and Technology Program, Division of Medical SciencesHarvard UniversityBostonUSA
  4. 4.Harvard Graduate School of EducationCambridgeUSA
  5. 5.Department of Medicine, Division of Developmental Medicine, Laboratories of Cognitive NeuroscienceChildren’s Hospital, BostonBostonUSA

Personalised recommendations