Annals of Dyslexia

, Volume 66, Issue 3, pp 319–336

Translating dyslexia across species

  • Lisa A. Gabel
  • Monica Manglani
  • Nicholas Escalona
  • Jessica Cysner
  • Rachel Hamilton
  • Jeffrey Pfaffmann
  • Evelyn Johnson
Article

Abstract

Direct relationships between induced mutation in the DCDC2 candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and whether children with reading impairment showed a similar impairment to animal models of the disorder (study 2). Study 1 included 37 participants who completed six trials of four different virtual Hebb-Williams maze configurations. A 2 × 4 × 6 mixed factorial repeated measures ANOVA indicated consistency in performance between humans and mice on these tasks, enabling us to translate across species. Study 2 included a total of 91 participants (age range = 8–13 years). Eighteen participants were identified with reading disorder by performance on the Woodcock-Johnson III Tests of Achievement. Participants completed six trials of five separate virtual Hebb-Williams maze configurations. A 2 × 5 × 6 mixed factorial ANCOVA (gender as covariate) indicated that individuals with reading impairment demonstrated impaired visuo-spatial performance on this task. Overall, results from this study suggest that we are able to translate behavioral deficits observed in genetic animal models of dyslexia to humans with reading impairment. Future studies will utilize the virtual environment to further explore the underlying basis for this impairment.

Keywords

CDSGs DCDC2 Early detection Reading impairment Visual processing 

References

  1. Baumann, O., Skilleter, A. J., & Mattingley, J. B. (2011). Short-term memory maintenance of object locations during active navigation: which working memory subsystem is essential? PLoS One, 6(5), e19707.CrossRefGoogle Scholar
  2. Bishop, D. V. (2015). The interface between genetics and psychology: lessons from developmental dyslexia. Proceedings of the Biological Sciences, 282(1806), 20143139. doi:10.1098/rspb.2014.3139.CrossRefGoogle Scholar
  3. Boehm, G., Sherman, G., Hoplight, B. n., Hyde, L., Waters, N., Bradway, D., . . . Denenberg, V. (1996). Learning and memory in the autoimmune BXSB mouse: effects of neocortical ectopias and environmental enrichment. Brain Research, 726(1–2), 11–22.Google Scholar
  4. Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: the visual attention span deficit hypothesis. Cognition, 104(2), 198–230.CrossRefGoogle Scholar
  5. Braun, J. M., Lucchini, R., Bellinger, D. C., Hoffman, E., Nazzaro, M., Smith, D. R., & Wright, R. O. (2012). Predictors of virtual radial arm maze performance in adolescent Italian children. Neurotoxicology, 33(5), 1203–1211. doi:10.1016/j.neuro.2012.06.012.CrossRefGoogle Scholar
  6. Che, A., Girgenti, M. J., & Loturco, J. (2013). The dyslexia-associated gene Dcdc2 is required for spike-timing precision in mouse neocortex. Biological Psychiatry, 76(5), 387–396. doi:10.1016/j.biopsych.2013.08.018.CrossRefGoogle Scholar
  7. Cope, N., Eicher, J. D., Meng, H., Gibson, C. J., Hager, K., Lacadie, C., . . . Gruen, J. R. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. Neuroimage, 63(1), 148–156. doi:10.1016/j.neuroimage.2012.06.037.
  8. Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676. doi:10.1016/j.biopsych.2012.05.008.CrossRefGoogle Scholar
  9. Dolins, F. L., Klimowicz, C., Kelley, J., & Menzel, C. R. (2014). Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. American Journal of Primatology. doi:10.1002/ajp.22252.Google Scholar
  10. Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110(3), 201–212. doi:10.1016/j.ymgme.2013.07.001.CrossRefGoogle Scholar
  11. Eicher, J. D., Powers, N. R., Miller, L. L., Mueller, K. L., Mascheretti, S., Marino, C., . . . Gruen, J. R. (2014). Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Human Genetics. doi:10.1007/s00439-014-1427-3.
  12. Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226–239. doi:10.1002/dys.413.CrossRefGoogle Scholar
  13. Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., ... Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22(5), 1011–1025.Google Scholar
  14. Facoetti, A., Turatto, M., Lorusso, M. L., & Mascetti, G. G. (2001). Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138(1), 46–53.CrossRefGoogle Scholar
  15. Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., … Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.Google Scholar
  16. Franceschini, S., Gori, S., Ruffino, M., Pedrolli, K., & Facoetti, A. (2012). A causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814–819.CrossRefGoogle Scholar
  17. Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462–466.CrossRefGoogle Scholar
  18. Gabel, L. A., Gibson, C. J., Gruen, J. R., & LoTurco, J. J. (2010). Progress towards a cellular neurobiology of reading disability. Neurobiology of Disease, 38(2), 173–180. doi:10.1016/j.nbd.2009.06.019.CrossRefGoogle Scholar
  19. Gabel, L. A., Marin, I., LoTurco, J. J., Che, A., Murphy, C., Manglani, M., & Kass, M. (2011). Mutation of the dyslexia-associated gene Dcdc2 impairs LTM and visuo-spatial performance in mice. Genes, Brain, and Behavior, 10(8), 868–875. doi:10.1111/j.1601-183X.2011.00727.x.CrossRefGoogle Scholar
  20. Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.CrossRefGoogle Scholar
  21. Gori, S., & Facoetti, A. (2015). How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. Journal of Vision, 15(1), 15.11.18. doi:10.1167/15.1.8.CrossRefGoogle Scholar
  22. Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., & Quadrelli, E. (2015). The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cerebral Cortex, 25(6), 1685–1695.CrossRefGoogle Scholar
  23. Goswami, U. (2015a). Sensory theories of developmental dyslexia: three challenges for research. Nature Reviews Neuroscience, 16(1), 43–54.CrossRefGoogle Scholar
  24. Goswami, U. (2015b). Visual attention span deficits and assessing causality in developmental dyslexia. Nature Reviews Neuroscience, 16(4), 225.CrossRefGoogle Scholar
  25. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.CrossRefGoogle Scholar
  26. Green, C. S., Li, R., & Bavelier, D. (2010). Perceptual learning during action video game playing. Topics in Cognitive Science, 2(2), 202–216.CrossRefGoogle Scholar
  27. Hebb, D. O., & Williams, K. (1946). A method of rating animal intelligence. Journal of General Psychology, 34, 59–65.CrossRefGoogle Scholar
  28. Hoplight, B. J., Sherman, G. F., Hyde, L. A., & Denenberg, V. H. (2001). Effects of neocortical ectopias and environmental enrichment on Hebb-Williams maze learning in BXSB mice. Neurobiology of Learning and Memory, 76(1), 33.CrossRefGoogle Scholar
  29. Hubert-Wallander, B., Green, C. S., & Bavelier, D. (2011). Stretching the limits of visual attention: the case of action video games. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 222–230.Google Scholar
  30. Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology: General, 133(3), 355–381.CrossRefGoogle Scholar
  31. Lallier, M., Donnadieu, S., & Valdois, S. (2013). Developmental dyslexia: exploring how much phonological and visual attention span disorders are linked to simultaneous auditory processing deficits. Annals of Dyslexia, 63(2), 97–116.CrossRefGoogle Scholar
  32. Lee, J. Y., Kho, S., Yoo, H. B., Park, S., Choi, J. S., Kwon, J. S., … Jung, H. Y. (2014). Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatric Disease and Treatment, 10, 653–60.Google Scholar
  33. Ludwig, K., Schumacher, J., Schulte-Körne, G., König, I., Warnke, A., & Plume, E. (2008). Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large German dyslexia sample. Psychiatric Genetics, 18(6), 310–312.CrossRefGoogle Scholar
  34. MacLeod, L. S., Kogan, C. S., Collin, C. A., Berry-Kravis, E., Messier, C., & Gandhi, R. (2010). A comparative study of the performance of individuals with fragile X syndrome and Fmr1 knockout mice on Hebb-Williams mazes. Genes, Brain, and Behavior, 9(1), 53–64. doi:10.1111/j.1601-183X.2009.00534.x.CrossRefGoogle Scholar
  35. McConnell, J., & Quinn, J. G. (2000). Interference in visual working memory. The Quarterly Journal of Experimental Psychology Section A, 53(1), 53–67.CrossRefGoogle Scholar
  36. Meng, H., Powers, N. R., Tang, L., Cope, N. A., Zhang, P. X., Fuleihan, R., . . . Gruen, J. R. (2011). A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics, 41(1), 58–66. doi:10.1007/s10519-010-9408-3.
  37. Meng, H., Smith, S., Hager, K., Held, M., Liu, J., Olson, R., . . . Gruen, J. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17053–17058.Google Scholar
  38. Menghini, D., Finzi, A., Carlesimo, G. A., & Vicari, S. (2011). Working memory impairment in children with developmental dyslexia: is it just a phonological deficity? Developmental Neuropsychology, 36(2), 199–213.CrossRefGoogle Scholar
  39. Meunier, M., Saint-Marc, M., & Destrade, C. (1986). The Hebb-Williams test to assess recovery of learning after limbic lesions in mice. Physiology and Behavior, 37(6), 909–913.CrossRefGoogle Scholar
  40. Moores, E., Cassim, R., & Talcott, J. B. (2011). Adults with dyslexia exhibit large effects of crowding, increased dependence on cues, and detrimental effects of distractors in visual search tasks. Neuropsychologia, 49(14), 3881–3890. doi:10.1016/j.neuropsychologia.2011.10.005.CrossRefGoogle Scholar
  41. Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud. Psychological Review, 114, 273–315.CrossRefGoogle Scholar
  42. Peschansky, V. J., Burbridge, T. J., Volz, A. J., Fiondella, C., Wissner-Gross, Z., & Galaburda, A. M. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20(4), 884–897.CrossRefGoogle Scholar
  43. Peterson, R. L., & Pennington, B. F. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283–307. doi:10.1146/annurev-clinpsy-032814-112842.CrossRefGoogle Scholar
  44. Ploran, E. J., Bevitt, J., Oshiro, J., Parasuraman, R., & Thompson, J. C. (2014). Self-motivated visual scanning predicts flexible navigation in a virtual environment. Frontiers in Human Neuroscience, 7, 892. doi:10.3389/fnhum.2013.00892.CrossRefGoogle Scholar
  45. Powers, N. R., Eicher, J. D., Butter, F., Kong, Y., Miller, L. L., Ring, S. M., . . . Gruen, J. R. (2013). Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. The American Journal of Human Genetics, 93(1), 19–28. doi:10.1016/j.ajhg.2013.05.008.
  46. Powers, N. R., Eicher, J. D., Miller, L. L., Kong, Y., Smith, S. D., Pennington, B. F., … Gruen, J. R. (2015). The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. Journal of Medical Genetics. doi:10.1136/jmedgenet-2015-103418.
  47. Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., & Lee, J. R. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 207–213.CrossRefGoogle Scholar
  48. Rabinovitch, M. S., & Rosvold, H. E. (1951). A closed-field intelligence test for rats. Canadian Journal of Psychology, 5(3), 122–128.CrossRefGoogle Scholar
  49. Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., ... Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237–245.Google Scholar
  50. Schrank, F. A., McGrew, K. S., & Woodcock, R. W. (2001). Woodcock-Johnson III assessment service bulletin no. 2. Itasca: Riverside Publishing.Google Scholar
  51. Shore, D. I., Stanford, L., MacInnes, W. J., Klein, R. M., & Brown, R. E. (2001). Of mice and men: virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 83–89.CrossRefGoogle Scholar
  52. Sireteanu, R., Goebel, C., Goertz, R., Werner, I., Nalewajko, M., & Thiel, A. (2008). Impaired serial visual search in children with developmental dyslexia. Annals of the New York Academy of Sciences, 1145, 199–211. doi:10.1196/annals.1416.021.CrossRefGoogle Scholar
  53. Sireteanu, R., Goertz, R., Bachert, I., & Wandert, T. (2005). Children with developmental dyslexia show a left visual “minineglect”. Vision Research, 45(25–26), 3075–3082. doi:10.1016/j.visres.2005.07.030.CrossRefGoogle Scholar
  54. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychology Review, 55(4), 189–208.CrossRefGoogle Scholar
  55. Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: the lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15(1), 55–64.CrossRefGoogle Scholar
  56. Truong, D. T., Che, A., Rendall, A. R., Szalkowski, C. E., LoTurco, J. J., Galaburda, A. M., & Fitch, H. R. (2014). Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes, Brain, and Behavior, 13(8), 802–811. doi:10.1111/gbb.12170.CrossRefGoogle Scholar
  57. van Gerven, D. J., Schneider, A. N., Wuitchik, D. M., & Skelton, R. W. (2012). Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do. Behavioral Neuroscience, 126(3), 465–478. doi:10.1037/a0027992.CrossRefGoogle Scholar
  58. Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Riverside: Riverside Publishing.Google Scholar
  59. Yuan, P., Daugherty, A. M., & Raz, N. (2014). Turning bias in virtual spatial navigation: age-related differences and neuroanatomical correlates. Biological Psychology, 96, 8–19. doi:10.1016/j.biopsycho.2013.10.009.CrossRefGoogle Scholar

Copyright information

© The International Dyslexia Association 2016

Authors and Affiliations

  • Lisa A. Gabel
    • 1
    • 2
  • Monica Manglani
    • 2
  • Nicholas Escalona
    • 3
  • Jessica Cysner
    • 2
  • Rachel Hamilton
    • 2
  • Jeffrey Pfaffmann
    • 3
  • Evelyn Johnson
    • 4
  1. 1.Department of PsychologyLafayette CollegeEastonUSA
  2. 2.Program in NeuroscienceLafayette CollegeEastonUSA
  3. 3.Department of Computer ScienceLafayette CollegeEastonUSA
  4. 4.Department of Special EducationBoise State UniversityBoiseUSA

Personalised recommendations