Annals of Dyslexia

, Volume 65, Issue 2, pp 69–83 | Cite as

Reading and coherent motion perception in school age children

  • Evita KassalieteEmail author
  • Ivars Lacis
  • Sergejs Fomins
  • Gunta Krumina


This study includes an evaluation, according to age, of the reading and global motion perception developmental trajectories of 2027 school age children in typical stages of development. Reading is assessed using the reading rate score test, for which all of the student participants, regardless of age, received the same passage of text of a medium difficulty reading level. The coherent motion perception threshold is determined according to the adaptive psychophysical protocol based on a four-alternative, forced-choice procedure. Three different dot velocities: 2, 5, and 8 deg/s were used for both assemblies of coherent or randomly moving dots. Reading rate score test results exhibit a wide dispersion across all age groups, so much so that the outlier data overlap, for both the 8 and 18-year-old student-participant age groups. Latvian children’s reading fluency developmental trajectories reach maturation at 12–13 years of age. After the age of 13, reading rate scores increase slowly; however, the linear regression slope is different from zero and positive: F(1, 827) = 45.3; p < 0.0001. One hundred eighty-one student-participants having results below the 10th percentile were classified as weak readers in our study group. The reading fluency developmental trajectory of this particular group of student-participants does not exhibit any statistically significant saturation until the age of 18 years old. Coherent motion detection thresholds decrease with age and do not reach saturation. Tests with slower moving dots (2 deg/s) yield results that exhibit significant differences between strong and weak readers.


Coherent motion detection threshold Development Reading rate score 



This study was supported by the European Social Foundation within the project «Support for Doctoral Studies at University of Latvia» No.2009/0138/1DP/ and by European Social Foundation within the project ESF Nr. 2013/0021/1DP/


  1. Badcock, D. R., Clifford, C. W. G., & Khuu, S. K. (2005). Interactions between luminance and contrast signals in global form detection. Vision Research, 45, 881–889.CrossRefGoogle Scholar
  2. Badian, N. A. (1984). Reading disability in an epidemiological context: incidence and environmental correlates. Journal of Learning Disabilities, 17(3), 129–136.CrossRefGoogle Scholar
  3. Barnard, N., Crewther, S. G., & Crewther, D. P. (1998). Development of a magnocellular function in good and poor primary school-age readers. Optometry and Vision Science, 75(1), 62–68.CrossRefGoogle Scholar
  4. Bjornsson, C.H. (1968). Lasbarhet, Stockholm: Liber.
  5. Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., & Ghesquiere, P. (2011). Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child Development, 82(3), 854–869.CrossRefGoogle Scholar
  6. Braddick, O., & Qian, N. (2001). The organization of global motion and transparency. In J. M. Zanker & J. Zeil (Eds.), Motion vision—computational, neural and ecological constraints (pp. 86–106). Berlin: Springer.Google Scholar
  7. Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: motion coherence and ‘dorsal stream vulnerability’. Neuropsychologia, 41(13), 1769–1784.CrossRefGoogle Scholar
  8. Burr, D. C., Fiorentini, A., & Morrone, C. (1998). Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed. Vision Research, 38(23), 3681–3690.CrossRefGoogle Scholar
  9. Carver, R. P. (1990). Reading rate: a review of research and theory. San Diego: Academic.Google Scholar
  10. Cassanello, C. R., Edwards, M., Badcock, D. R., & Nishida, S. (2011). No interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Research, 51, 352–361.CrossRefGoogle Scholar
  11. Chen, Y., Nakayama, K., Levy, D., Matthysse, S., & Holzman, P. (2003). Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61, 215–227.CrossRefGoogle Scholar
  12. Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35(10), 1483–1494.CrossRefGoogle Scholar
  13. Cornelissen, P. L., Hansen, P. C., Gilchrist, I., Cormack, F., Essex, J., & Frankish, C. (1998). Coherent motion detection and letter position encoding. Vision Research, 38(14), 2181–2191.CrossRefGoogle Scholar
  14. Cornelissen, P. L., Hansen, P. C., Hutton, J. L., Evangelinou, V., & Stein, J. F. (1998). Magnocellular visual function and children’s single word reading. Vision Research, 38(3), 471–482.CrossRefGoogle Scholar
  15. Cornelissen, P. L., Kringelbach, M. L., Ellis, A. W., Carol Whitney, C., Holliday, I. E., & Hansen, P. C. (2009). Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG). PLoS One, 4(4), e5359. doi: 10.1371/journal.pone.0005359.CrossRefGoogle Scholar
  16. Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38(11), 1555–1559.CrossRefGoogle Scholar
  17. Dikinson, J. E., & Badcock, D. R. (2009). Position encoding of the centres of global structure: separate form and motion processes. Vision Research, 49, 648–656.CrossRefGoogle Scholar
  18. Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 362, 66–69.CrossRefGoogle Scholar
  19. Ellemberg, D., Lewis, T. L., Dirks, M., Maurer, D., Ledgeway, T., Guillemot, J. P., et al. (2004). Putting order into the development of sensitivity to global motion. Vision Research, 44, 2403–2411.CrossRefGoogle Scholar
  20. Englund, J. A., & Palomares, M. (2012). The relationship of global form and motion to reading fluency. Vision Research, 67, 14–21.CrossRefGoogle Scholar
  21. Gegenfurtner, K. R., & Hawken, M. J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research, 35(11), 1547–1563.CrossRefGoogle Scholar
  22. Grossman, E. D., & Blake, R. (1999). Perception of coherent motion, biological motion and form-form-motion under dim-light conditions. Vision Research, 39, 3721–3727.CrossRefGoogle Scholar
  23. Hayward, J., Truong, G., Partanen, M., & Giaschi, D. (2011). Effects of speed, age, and amblyopia on the perception of motion-defined form. Vision Research, 51, 2216–2234.CrossRefGoogle Scholar
  24. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey strite cortex. Journal of Physiology, 195(1), 215–243.CrossRefGoogle Scholar
  25. Khuu, S. K., & Badcock, D. R. (2002). Global speed processing: evidence for local averaging within, but not across two speed range. Vision Ressearch, 42(28), 3031–3042.CrossRefGoogle Scholar
  26. Kiorpes, L., Price, T., Hall-Haro, C., & Movshon, A. J. (2012). Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina). Vision Research, 63(15), 34–42.CrossRefGoogle Scholar
  27. Laycock, R., Crewther, S. G., Kiely, P. M., & Crewther, D. P. (2006). Parietal function in good and poor readers. Behavioral and Brain Function, 2(26), 1–14. doi: 10.1186/1744-9081-2-26. BioMed Central.Google Scholar
  28. Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279–1292.CrossRefGoogle Scholar
  29. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefGoogle Scholar
  30. Lovergrove, W. J., Martin, F., & Slaghuis, W. A. (1986). A theoretical and experimental case for a visual deficit in specific reading disability. Cognitive Neuropsychology, 3, 225–267.CrossRefGoogle Scholar
  31. Manning, C., Agten-Murphy, D., & Pellicano, L. (2012). The development of speed discrimination abilities. Vision Research, 70, 27–33.CrossRefGoogle Scholar
  32. Masson, G. S., Mestre, D. R., & Stone, L. S. (1999). Speed tuning of motion segmentation and discrimination. Vision Research, 39(26), 4297–4308.CrossRefGoogle Scholar
  33. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.CrossRefGoogle Scholar
  34. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.CrossRefGoogle Scholar
  35. Nicolson, R. I., & Fawcett, A. J. (2008). Dyslexia, lerning and the brain (pp. 1–283). Cambridge: The MIT Press.CrossRefGoogle Scholar
  36. Norton, E.S., Wolf, M. (2012). Rapid automatized naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427–452,, doi:  10.1146/annurev-psych-120710-100431.
  37. Palomares, M., & Shannon, M. T. (2013). Global dot integration in typically developing children and in Williams syndrome. Brain and Cognition, 83, 262–270.CrossRefGoogle Scholar
  38. Palomares, M., Ales, J. M., Wade, R. A., Cottereau, B. R., & Norcia, A. M. (2012). Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study. Journal of Vision, 12(10), 15. doi: 10.1167/12.10.15. 1–14.CrossRefGoogle Scholar
  39. Parrish, E. E., Giaschi, D. E., Boden, C., & Dougherty, R. (2005). The maturation of form and motion perception in school age children. Vision Research, 45(7), 827–837.CrossRefGoogle Scholar
  40. Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 2593–2596.CrossRefGoogle Scholar
  41. Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia, 43, 1044–1053.CrossRefGoogle Scholar
  42. Program for International Student Assessment (PISA). (2012).
  43. Ramus, F., Pidgeon, E., & Frith, U. (2003). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry, 44(5), 712–722.CrossRefGoogle Scholar
  44. Reinagel, P. (2013). Speed and accuracy in a visual motion discrimination task as performed by rats. PLoS One. doi: 10.1371/journal.pone.0068505.Google Scholar
  45. Ridder, W. H., III, Borsting, E., & Banton, T. (2001). All developmental dyslexic subtypes display an elevated motion coherence threshold. Optometry and Vision Science, 78(7), 510–517.CrossRefGoogle Scholar
  46. Shaywitz, S. E., Shaywitz, B. A., Fletcher, J. M., & Escobar, M. D. (1990). Prevalence of reading disability in boys and girls: results of the Connecticut longitudinal study. JAMA, 264, 998–1002.CrossRefGoogle Scholar
  47. Shaywitz, S. E., Fletcher, J. M., Holahan, J. M., Shneider, A. E., Marchione, K. E., Stuebing, K. K., et al. (1999). Persistence of dyslexia: the Connecticut longitudinal study at adolescence. Pediatrics, 104(6), 1351–1359.CrossRefGoogle Scholar
  48. Stanovich, K. E. (1988). Explaining the differences between the dyslexic and the garden-variety poor reader: the phonological-core variable-difference model. Journal of Learning Disabilities, 21(10), 590–604.CrossRefGoogle Scholar
  49. Stein, J. (2003). Visual motion sensitivity and reading. Neuropsychologia, 41, 1785–1793.CrossRefGoogle Scholar
  50. Talcott, J. B., Hansen, P. C., & Stein, J. F. (1998). Visual magnocellular impairment in developmental dyslexics. Neuro-ophthalmology, 20, 187–201.CrossRefGoogle Scholar
  51. Van Boxtel, J. A., & Erkelens, C. J. (2006). A single motion system suffices for global-motion perception. Vision Research, 46, 4634–4645.CrossRefGoogle Scholar
  52. Verstraten, F. A., van der Smagt, M. J., Fredericksen, R. E., & van de Grind, W. A. (1999). Integration after adaptation to transparent motion: static and dynamic test patterns result in different aftereffect directions. Vision Research, 39(4), 803–810.CrossRefGoogle Scholar
  53. Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., et al. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonwords reading ability in both dyslexic and normal readers. Current Biology, 8(14), 791–797.CrossRefGoogle Scholar
  54. Yoonessi, A. (2011). Functional assessment of magno, parvo and konio-cellular pathways. Journal of Ophthalmic Vision Research, 6(2), 119–126.Google Scholar

Copyright information

© The International Dyslexia Association 2015

Authors and Affiliations

  • Evita Kassaliete
    • 1
    Email author
  • Ivars Lacis
    • 1
  • Sergejs Fomins
    • 2
  • Gunta Krumina
    • 1
  1. 1.Department of Optometry and Vision ScienceUniversity of LatviaRigaLatvia
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations