Annals of Dyslexia

, Volume 61, Issue 2, pp 177–200 | Cite as

Computer-based learning of spelling skills in children with and without dyslexia

  • Monika KastEmail author
  • Gian-Marco BascheraEmail author
  • Markus Gross
  • Lutz Jäncke
  • Martin Meyer


Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based student model. We investigated the spelling behavior of children by means of learning curves based on log-file data of the previous and the enhanced software version. First, we compared the learning progress of children with dyslexia working either with the previous software (n = 28) or the adapted version (n = 37). Second, we investigated the spelling behavior of children with dyslexia (n = 37) and matched children without dyslexia (n = 25). To gain deeper insight into which factors are relevant for acquiring spelling skills, we analyzed the influence of cognitive abilities, such as attention functions and verbal memory skills, on the learning behavior. All investigations of the learning process are based on learning curve analyses of the collected log-file data. The results evidenced that those children with dyslexia benefit significantly from the additional phonological cue and the corresponding phoneme-based student model. Actually, children with dyslexia improve their spelling skills to the same extent as children without dyslexia and were able to memorize phoneme to grapheme correspondence when given the correct support and adequate training. In addition, children with low attention functions benefit from the structured learning environment. Generally, our data showed that memory sources are supportive cognitive functions for acquiring spelling skills and for using the information cues of a multi-modal learning environment.


Acquiring spelling skills Associative learning Developmental dyslexia Learning curves Multisensory learning 



This project was supported by the Research Funding University of Zurich (56234102), the SNF-grant 320000–120661/1, and the CTI-grant 8970.1.


  1. Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge: MIT Press.Google Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19, 716–723.CrossRefGoogle Scholar
  3. Annett, M. (1970). A classification of hand preferences by association analysis. British Journal of Psychology, 61, 303–321.CrossRefGoogle Scholar
  4. Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158–173.CrossRefGoogle Scholar
  5. Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45(4), 495–503.CrossRefGoogle Scholar
  6. Baschera, G. M., & Gross, M. (2009). A Phoneme-Based Student Model for Adaptive Spelling Training. Paper presented at the In Proceedings of Artificial Intelligence in Education.Google Scholar
  7. Berninger, V. W., Abbott, R. D., Zook, D., Ogier, S., Lemos-Britton, Z., & Brooksher, R. (1999). Early intervention for reading disabilities. Journal of Learning Disabilities, 32(6), 491–503.CrossRefGoogle Scholar
  8. Bodén, M., & Bodén, M. (2007). Evolving spelling exercises to suit individual student needs. Applied Sort Computing, 7, 126–135.CrossRefGoogle Scholar
  9. Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read-a causal connection. Nature, 301, 419–421.CrossRefGoogle Scholar
  10. Byrne, B. (1998). The foundation of literacy: The child’s acquistion of the alphabetic principle. East Sussex UK: Psychology Press.Google Scholar
  11. Crespo Garcia, R. M., Delgado Kloos, C., & Castro Gil, M. (2008). Game based spelling learning. Paper presented at the 38th ASSEE/IEEE Frontiers in Education Conference. Saratoga Springs, NY.Google Scholar
  12. Drewe, E. A. (1975). Go-nogo learning after frontal lobe lesions in humans. Cortex, 11, 8–16.Google Scholar
  13. Ecalle, J., Magnan, A., Bouchafa, H., & Gombert, J. E. (2009). Computer-based training with ortho-phonological units in dyslexic children: New investigations. Dyslexia, 15(3), 218–238.CrossRefGoogle Scholar
  14. Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2, 460–493.CrossRefGoogle Scholar
  15. Frith, U. (1985). Beneath the surface of developmental dyslexia surface dyslexia. In K. E. Patterson, J. C. Marshall, & M. Coltheart (Eds.), Neurophysiological and cognitive studies of phonological reading (pp. 301–327). London: Erlbaum.Google Scholar
  16. Gascon, G., & Goodglass, H. (1970). Reading retardation and the information content of stimuli in paired associate learning. Cortex, 6(4), 417–429.Google Scholar
  17. Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A.-M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265–281.CrossRefGoogle Scholar
  18. Goswami, U., Ziegler, J. C., & Richardson, U. (2005). The effects of spelling consistency on phonological awareness: A comparison of English and German. Journal of Experimental Child Psychology, 92(4), 345–365.CrossRefGoogle Scholar
  19. Goyen, J. D., & Lyle, J. G. (1971). Effect of incentives upon retarded and normal readers on a visual-associated learning task. Journal of Experimental Child Psychology, 11(2), 274–280.CrossRefGoogle Scholar
  20. Gross, M., & Voegeli, C. (2007). A multimedia framework for effective language training. Computers & Graphics, 31, 761–777.Google Scholar
  21. Grund, M., Haug, G., Naumann, C. L., & Weinheim, B.-V. (1995). Diagnostischer Rechtschreibtest 5. Klasse. Weinheim: Beltz-Verlag.Google Scholar
  22. Heathcote, A., Brown, S., & Mewhort, D. J. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185–207.CrossRefGoogle Scholar
  23. Hilte, M., & Reitsma, P. (2006). Spelling pronunciation and visual preview both facilitate learning to spell irregular words. Annals of Dyslexia, 56(2), 301–318.CrossRefGoogle Scholar
  24. Hulme, C., Goetz, K., Gooch, D., Adams, J., & Snowling, M. J. (2007). Paired-associate learning, phoneme awareness, and learning to read. Journal of Experimental Child Psychology, 96(2), 150–166.CrossRefGoogle Scholar
  25. Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2010). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, (In Press). Corrected Proof.Google Scholar
  26. Kast, M., Meyer, M., Vogeli, C., Gross, M., & Jancke, L. (2007). Computer-based multisensory learning in children with developmental dyslexia. Restorative Neurology and Neuroscience, 25(3–4), 355–369.Google Scholar
  27. Kujala, T., Karma, K., Ceponiene, R., Belitz, S., Turkkila, P., Tervaniemi, M., et al. (2001). Plastic neural changes and reading improvement caused by audiovisual training in reading-impaired children. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10509–10514.CrossRefGoogle Scholar
  28. Landerl, K., Wimmer, H., & Moser, E. (1997). Der Salzburger Lese- und Rechtschreibtest (SLRT). Bern: Verlag Hans Huber.Google Scholar
  29. Lashley, K. S. (1951). The problem of serial order in behavior. In F. Beach, D. Hebb, C. Morgan, & H. Nissen (Eds.), The neuropsychology of Lashley 1960 (pp. 506–528). New York: McGraw-Hill.Google Scholar
  30. Lehmann, S., & Murray, M. M. (2005). The role of multisensory memories in unisensory object discrimination. Brain Research. Cognitive Brain Research, 24(2), 326–334.CrossRefGoogle Scholar
  31. Lezak, M. (1995). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  32. Li, H., Shu, H., McBride-Chang, C., Liu, H. Y., & Xue, J. (2009). Paired associate learning in Chinese children with dyslexia. Journal of Experimental Child Psychology, 103(2), 135–151.CrossRefGoogle Scholar
  33. Linder, M., & Grissemann, H. (2000). Zürcher Lesetest. Bern-Göttingen: Hogrefe-Verlag.Google Scholar
  34. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefGoogle Scholar
  35. Lovegrove, W. J., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science, 210(4468), 439–440.CrossRefGoogle Scholar
  36. Lux, S., Helmstaedter, C., & Elger, C. E. (1999). Normative study on the “Verbaler Lern- und Merkfa-higkeitstest” (VLMT): Diagnostica.Google Scholar
  37. Lyon, G., Shaywitz, S., & Shaywitz, B. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 1–14.CrossRefGoogle Scholar
  38. Messbauer, V. C., & de Jong, P. F. (2003). Word, nonword, and visual paired associate learning in Dutch dyslexic children. Journal of Experimental Child Psychology, 84(2), 77–96.CrossRefGoogle Scholar
  39. Miller, P., & Kupfermann, A. (2009). The role of visual and phonological representations in the processing of written words by readers with diagnosed dyslexia: Evidence from a working memory task. Annals of Dyslexia, 59(1), 12–33.CrossRefGoogle Scholar
  40. Muter, V., Hulme, C., Snowling, M. J., & Stevenson, J. (2004). Phonemes, rimes, vocabulary, and grammatical skills as foundations of early reading development: Evidence from a longitudinal study. Developmental Psychology, 40(5), 665–681.CrossRefGoogle Scholar
  41. Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquistion (pp. 1–55). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  42. Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35(2), 159–182.CrossRefGoogle Scholar
  43. Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11120–11124.CrossRefGoogle Scholar
  44. Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(Pt 1), 143–157.CrossRefGoogle Scholar
  45. Posner, M. I., & Presti, D. (1987). Selective attention and cognitive control. Trends in Neurosciences, 10, 12–17.CrossRefGoogle Scholar
  46. Posner, M. I., & Rafal, R. D. (1987). Cognitive theories of attention and the rehabilitation of attentional deficits. In R. J. Meier, A. C. Benton, & L. Diller (Eds.), Neuropsychological rehabilitation. Edinburgh: Churchill Livingstone.Google Scholar
  47. R Development Core Team. (2005). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria: ISBN 3-900051-07-0.Google Scholar
  48. Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(4), 841–865.CrossRefGoogle Scholar
  49. Re, A. M., Caeran, M., & Cornoldi, C. (2008). Improving expressive writing skills of children rated for ADHD symptoms. Journal of Learning Disabilities, 41(6), 535–544.CrossRefGoogle Scholar
  50. Reed, M. A. (1989). Speech perception and the discrimination of brief auditory cues in reading disabled children. Journal of Experimental Child Psychology, 48(2), 270–292.CrossRefGoogle Scholar
  51. Rudel, R. G. (1985). The definition of dyslexia: Language and motor deficits. In F. H. Duffy & H. Gschwind (Eds.), Dyslexia: A neuroscientific approach to clinical evaluation (pp. 33–53). Boston: Little Brown.Google Scholar
  52. Schulte-Korne, G., Deimel, W., Bartling, J., & Remschmidt, H. (2004). Neurophysiological correlates of word recognition in dyslexia. Journal of Neural Transmission, 111(7), 971–984.Google Scholar
  53. Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12(11), 411–417.CrossRefGoogle Scholar
  54. Snowling, M., Bishop, D. V., & Stothard, S. E. (2000). Is preschool language impairment a risk factor for dyslexia in adolescence? Journal of Child Psychology and Psychiatry, 41(5), 587–600.CrossRefGoogle Scholar
  55. Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147–152.CrossRefGoogle Scholar
  56. Steingruber, H. J. (1971). Hand-Dominanz-Test (HDT). Göttingen: Verlag für Psychologie Dr. C. J. Hogrefe.Google Scholar
  57. Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198.CrossRefGoogle Scholar
  58. Tewes, U., & Rossmann, P. U. S. (1999). Hamburg-Wechsler-Intelligenztest für Kinder. Bern: Verlag Hans-Huber.Google Scholar
  59. van Atteveldt, N. M., Formisano, E., Goebel, R., & Blomert, L. (2007). Top-down task effects overrule automatic multisensory responses to letter-sound pairs in auditory association cortex. Neuroimage, 36(4), 1345–1360.CrossRefGoogle Scholar
  60. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.CrossRefGoogle Scholar
  61. Vellutino, F. R., Steger, J. A., Harding, C. J., & Phillips, F. (1975). Verbal vs non-verbal paired-associates learning in poor and normal readers. Neuropsychologia, 13(1), 75–82.CrossRefGoogle Scholar
  62. Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11125–11129.CrossRefGoogle Scholar
  63. Wolff, P. H., Michel, G. F., & Ovrut, M. (1990). Rate variables and automatized naming in developmental dyslexia. Brain and Language, 39(4), 556–575.CrossRefGoogle Scholar
  64. World Health Organization. (1993). ICD-10. The international classification of diseases. Geneva: World Health Organization.Google Scholar
  65. Zimmermann, P., Gondan, M., & Fimm, B. (2002). KITAP Testbatterie zur Aufmerksamkeitsprüfung für Kinder. Herzogenrath: Psytest, Vera Fimm, Psychologisches Testsysteme.Google Scholar

Copyright information

© The International Dyslexia Association 2011

Authors and Affiliations

  1. 1.Department of NeuropsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Institute for Computational ScienceETH ZürichZurichSwitzerland
  3. 3.Institute of NeuropsychologyUniversity of ZurichZurichSwitzerland

Personalised recommendations