Annals of Dyslexia

, Volume 59, Issue 1, pp 1–11 | Cite as

The role of gene DCDC2 in German dyslexics

  • A. Wilcke
  • J. Weissfuss
  • H. Kirsten
  • G. Wolfram
  • J. Boltze
  • P. Ahnert


Dyslexia is a complex reading and writing disorder with a strong genetic component. In a German case-control cohort, we studied the influence of the suspected dyslexia-associated gene DCDC2. For the first time in a German cohort, we describe association of a 2445 basepair deletion, first identified in an American study. Evidence of association for three DCDC2 single nucleotide polymorphisms (rs807724, rs793862, rs807701), previously identified in German or American cohorts, was replicated. A haplotype of these polymorphisms showed evidence for association as well. Thus, our data further corroborate association of DCDC2 with dyslexia. Analysis of functional subgroups suggests association of investigated DCDC2 variants mainly with nondysphonetic, nonsevere, but probably dyseidetic (surface) dyslexia. Based on the presumed function of DCDC2, our findings point to a role of impaired neuronal migration in the etiology of the disease.


DCDC2 Genetics Genetics of dyslexia Germans Subgroups Subgroup-specificity 

Supplementary material

11881_2008_20_MOESM1_ESM.doc (104 kb)
ESM 1 List of Publications on dyslexia and Chromosomes 6 and 15 (DOC 108 KB)


  1. Barrett, J. C., et al. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England), 21, 263–265. doi: 10.1093/bioinformatics/bth457.CrossRefGoogle Scholar
  2. Boder, E. (1971). Developmental dyslexia: Prevailing diagnostic concepts and a new diagnostic approach. In H. Myklebus (Ed.), Progress in learning disabilities (pp. 293–321). New York: Grune and Stratton.Google Scholar
  3. Brickenkamp, R., & Zillmer, E. (2002). The d2 test of attention (9th ed.). Göttingen: Hogrefe.Google Scholar
  4. Brkanac, Z., et al. (2007). Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 144, 556–560.CrossRefGoogle Scholar
  5. Coltheart, M., Masterson, J., Byng, S., Prior, M., & Riddoch, J. (1983). Surface dyslexia. Quarterly Journal of Experimental Psychology, 35, 469–495.Google Scholar
  6. Cope, N., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581–591. doi: 10.1086/429131.CrossRefGoogle Scholar
  7. Friocourt, G., et al. (2003). Doublecortin functions at the extremities of growing neuronal processes. Cerebral Cortex (New York, N.Y.), 13, 620–626. doi: 10.1093/cercor/13.6.620.CrossRefGoogle Scholar
  8. Galaburda, A. M., & Livingstone, M. (1993). Evidence for a magnocellular defect in developmental dyslexia. Annals of the New York Academy of Sciences, 682, 70–82. doi: 10.1111/j.1749-6632.1993.tb22960.x.CrossRefGoogle Scholar
  9. Gleeson, J. G., et al. (1998). Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encode a putative signaling protein. Cell, 92, 63–72. doi: 10.1016/S0092-8674(00)80899-5.CrossRefGoogle Scholar
  10. Grigorenko, E. L., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosome 6 and 15. American Journal of Human Genetics, 60, 27–39.Google Scholar
  11. Harold, D., et al. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(12), 1085–1091. doi: 10.1038/ Scholar
  12. Karl, C. (2004). Die Rolle des Doublecortin-Gens in neuronalen Vorläuferzellen während Migration und Neurogenese. Universität Regensburg. Ref Type: Thesis/Dissertation.Google Scholar
  13. Kent, W. J. (2002). BLAT-The BLAST-Like alignment tool. Genome Research, 12, 656–664.Google Scholar
  14. Kirsten, H., et al. (2006). CalcDalton: a tool for multiplex genotyping primer design for single-base extension reactions using cleavable primers. BioTechniques, 40, 158, 160, 162.CrossRefGoogle Scholar
  15. Kirsten, H., et al. (2007). Robustness of single-base extension against mismatches at the site of primer attachment in a clinical assay. Journal of Molecular Medicine (Berlin, Germany), 85, 361–369. doi: 10.1007/s00109-006-0129-2.Google Scholar
  16. Lathrop, G. M. (1983). Estimating genotype relative risk. Tissue Antigens, 22, 160–162.CrossRefGoogle Scholar
  17. Lewis, C. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year old boys and girls. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35(2), 283–292. doi: 10.1111/j.1469-7610.1994.tb01162.x.CrossRefGoogle Scholar
  18. Luciano, M. (2007). A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biol Psychiatry, 62(7), 811–817.CrossRefGoogle Scholar
  19. Marx, H. (1998). Knuspels Leseaufgaben (KNUSPEL-L). Göttingen: Hogrefe.Google Scholar
  20. Marx, H. (2000). Knuspels Leseaufgaben: Theorie, Umsetzung und Überprüfung. In M. Hasselhorn, W. Schneider, & H. Marx (Eds.), Diagnostik von Lese-Rechtschreibschwierigkeiten (pp. 35–62). Göttingen: Hogrefe.Google Scholar
  21. Meng, H., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Science of the United States of America, 102, 17053–17058.CrossRefGoogle Scholar
  22. Moores, C. A., et al. (2004). Mechanism of microtubule stabilization by doublecortin. Molecular Cell, 14, 833–839. doi: 10.1016/j.molcel.2004.06.009.CrossRefGoogle Scholar
  23. Müller-Myhsok, B., & Grimm, T. (1999). Linkage analysis and genetic models in dyslexia: considerations pertaining to discrete trait analysis and quantitative trait analysis. European Child & Adolescent Psychiatry, 8(Suppl. 3), 40–42. doi: 10.1007/PL00010692.CrossRefGoogle Scholar
  24. Nöthen, M. M., et al. (1999). Genetic linkage analysis with dyslexia: evidence for linkage of spelling disability to chromosome 15. European Child & Adolescent Psychiatry, 8(Suppl. 3), 56–59. doi: 10.1007/PL00010696.CrossRefGoogle Scholar
  25. Olson, R. K., Forsberg, H., & Wise, B. (1994). Genes, environment, and development of orthographic skills. In V. W. Berninger (Ed.), The varieties of orthographic knowledge I: theoretical and developmental issues (pp. 27–71). Dordrecht: Kluwer.Google Scholar
  26. Pusch, W., et al. (2001). Genotools SNP manager: A new software for automated high-throughput MALDI-TOF mass spectrometry SNP genotyping. BioTechniques, 30, 210–215.Google Scholar
  27. Rachlin, J., et al. (2005). muPlex: multi-objektive multiplex PCR assay design. Nucleic Acids Research, 33, W544–W547. doi: 10.1093/nar/gki377.CrossRefGoogle Scholar
  28. Reuter-Liehr, C. (1993). Behandlung der Lese-Rechtschreibschwäche nach der Grundschulzeit: Anwendung und Überprüfung eines Konzeptes. Zeitschrift fur Kinder- und Jugendpsychiatrie, 21(3), 135–147.Google Scholar
  29. Schneider, W., et al. (1999). Frühe Prävention von Lese- Rechtschreibproblemen. Das Würzburger Trainingsprogramm zur Förderung sprachlicher Bewusstheit bei Kindergartenkindern. Kindheit und Entwicklung, 8, 147–152. doi: 10.1026//0942-5403.8.3.147.CrossRefGoogle Scholar
  30. Schuler, G. D. (1997). Sequence mapping by electronic PCR. Genome Research, 7, 541–550.Google Scholar
  31. Schulte-Körne, G., Remschmid, H., & Hebebrand, J. (1993). Zur Genetik der Lese-Rechtschreibschwäche. Zeitschrift fur Kinder- und Jugendpsychiatrie, 21(3), 242–252.Google Scholar
  32. Schulte-Körne, G., et al. (1998). Evidence for linkage of spelling disability to chromosome 15. American Journal of Human Genetics, 63, 279–282. doi: 10.1086/301919.CrossRefGoogle Scholar
  33. Schulte-Körne, G., Deimel, W., & Remschmidt, H. (2001). Zur Diagnostik der Lese-Rechtschreibstörung. Zeitschrift fur Kinder- und Jugendpsychiatrie und Psychotherapie, 29(2), 113–116. doi: 10.1024//1422-4917.29.2.113.CrossRefGoogle Scholar
  34. Schumacher, J., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 52–62. doi: 10.1086/498992.CrossRefGoogle Scholar
  35. Stevenson, J. (1991). Which aspects of processing text mediate genetic effects? Read. Writ. Interdisc. J., 3, 249–269. doi: 10.1007/BF00354961.CrossRefGoogle Scholar
  36. Weiß, R. H. (1998). Grundintelligenztest Skala 2. Göttingen: Hogrefe.Google Scholar
  37. Wenzel, T. (2003). Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides, Nucleotides & Nucleic Acids, 22, 1579–1581. doi: 10.1081/NCN-120023038.CrossRefGoogle Scholar
  38. Zhang, K., et al. (2005). HAPLORE: a program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics (Oxford, England), 21(1), 90–103. doi: 10.1093/bioinformatics/bth388.CrossRefGoogle Scholar

Copyright information

© The International Dyslexia Association 2009

Authors and Affiliations

  • A. Wilcke
    • 1
    • 4
  • J. Weissfuss
    • 2
    • 3
  • H. Kirsten
    • 2
    • 3
  • G. Wolfram
    • 4
  • J. Boltze
    • 1
  • P. Ahnert
    • 2
    • 3
    • 4
    • 5
  1. 1.Fraunhofer-Institute for Cell Therapy and ImmunologyLeipzigGermany
  2. 2.IKIT—Institute for Clinical Immunology and Transfusion MedicineUniversity of LeipzigLeipzigGermany
  3. 3.BBZ—Center for Biotechnology and BiomedicineUniversity of LeipzigLeipzigGermany
  4. 4.TRM—Translational Center for Regenerative MedicineUniversity of LeipzigLeipzigGermany
  5. 5.IMISE—Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations