Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Solar radiation attenuation by aerosol: application to solar farms

  • 23 Accesses


The use of solar energy requires precise insolation knowledge of the considered site. Solar irradiance depends on geographical and astronomical parameters and variable characteristics of the atmosphere such as aerosol or cloud charge, which has a very important attenuation and pollution role. This study presents the estimate of the annual insolation of sites close to several solar farms. Insolation is calculated from Iqbal’s basic formulas with introduction of the total optical thickness determined by the AERONET. The PSDs and aerosol loading on an atmospheric column allowed the establishment of the attenuation-aerosol concentration relationship. The cloudless atmosphere attenuates the incident solar flux by an annual average of the order of 23.5%, where in average, about 13.73% is attributed to the aerosol, 17.75% for solar farm sites near the Sahara, and 8% for California and Arizona US sites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Alados-Arboledas L, Rascado JLG, Lyamani H, Navas-Guzmán F, FJO R (2007) Characterization of the atmospheric aerosol by combination of LIDAR and sun-photometry. Proc SPIE 6750:67500J–675001J.

  2. Almorox J, Hontoria C (2004) Global solar radiation estimation using sunshine duration in Spain. Energy Convers Manag 45:1529–1535

  3. Diner T, Hoyningen-Huene WV, Burrows JP, Kokhanovsky A, Bierwirth E, Wendisch M, Muller D, Kahn R, Diouri M (2009) Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM campaign. Tellus 61B:229–238

  4. Diouri M, Sanda IS (1997) Deduction of particle size distribution from aerosol optical depth CLEOPATRE I code. J Aerosol Sci 28(p):459

  5. Diouri M, El Hitmy M, Sanda IS, Jaenicke R, Kulzer S, Leiterer U, Schutz L, Schultz KH (1997) Indirect determination of particle size distribution using a sunphotometer at Lidenberg (Germany) and Oujda (Morocco). J Aerosol Sci 28(p):401

  6. Diouri M, Hoyningen-Huene WV, Zarrouk T, Dinter T, Kokhanovsky A, Burrows JP (2009) Determination of aerosol particle size distribution for mineral dust during the SAMUM campaign. European Aerosol Conference, Karlsruhe Abstract T052A16

  7. Du X, Jiang F, Liu E, Wu C, Ghorbel FH (2019) Turbulent airflow dust particle removal from solar panel surface: analysis and experiment. J Aerosol Sci 130(2019):32–44

  8. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 105:20,673–20,696

  9. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutske I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104(D24):31333–31349.

  10. El Amraoui L, Diouri M (2001) Characterisation of different air mass influences in terms of aerosol optical parameters. J Aerosol Sci 32(Supp1):S643–S644

  11. Elias T, Ramon D, Dubus L, Bourdil C, Cuevas-Agulló E, Zaidouni T, Formenti P (2016) Aerosols attenuating the solar radiation collected by solar tower plants: the horizontal pathway at surface level. AIP Conf Proc 1734:150004.

  12. Frank TD, Girolamo LD, Geegan S (2007) The spatial and temporal variability of aerosol optical depths in the Mojave Desert of southern California. Remote Sens Environ 107:54–64

  13. Fröhlich C (2009) Evidence of a long-term trend in total solar irradiance. Astron Astrophys 501:L27–L30.

  14. Gueymard CA (2012) Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Sol Energy 86:3544–3553

  15. Gueymard CA (2018) A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Sol Energy 168(2018):2–9

  16. Guirado C, Cuevas E, Cachorro VE, Toledano C, Alonso-Pérez S, Bustos JJ, Basart S, Romero PM, Camino C, Mimouni M, Zeudmi L, Goloub P, Baldasano JM, de Frutos AM (2014) Aerosol characterization at the Saharan AERONET site Tamanrasset. Atmos Chem Phys 14:11753–11773

  17. Guleria RP, Kuniyal JC (2013) Aerosol climatology in the northwestern Indian Himalaya: a study based on the radiative properties of aerosol. Air Qual Atmos Health 6:717–724.

  18. Hanrieder N, Wilbert S, Pitz-Paal R, Emde C, Gasteiger J, Mayer B, Polo J (2015) Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements. Atmos Meas Tech 8:3467–3480

  19. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

  20. Holben BN, Tanré D, Smirnov A, Eck TF, Slutsker I, Dubovik O, Lavenu F, Abuhassen N, Chatenet B (1999) Optical properties of aerosol from long term ground-based AERONET measurements. In: Proc. ALPS99, 17-23 January 1999, Meribel, France, WK1-O-19.

  21. Holben BN, Eck TF, Slutsker I, Smirnov A, Sinyuk A, Schafer J, Giles D, Dubovik O (2006) Aeronet's Version 2.0 quality assurance criteria. In: SPIE Asia-Pacific Remote Sensing, 2006, Goa, India. Proceedings Volume 6408, Remote Sensing of the Atmosphere and Clouds; 64080Q.

  22. Hoyningen-Huene WV, Dinter T, Kokhanovsky AA, Burrows JP, Wendisch M, Bierwirth E, Muller D, Diouri M (2009) Measurements of desert dust optical characteristics at Porte au Sahara during SAMUM. Tellus 61B:206–215

  23. IAU (2015) Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties. Accessed 13 Aug 2015

  24. Iqbal M (1983) An introduction to solar radiation. Academic Press, Toronto

  25. Jaszczur M, Teneta J, Styszko K, Hassan Q, Burzyńska P, Marcinek E, Łopian N (2019) The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency. Environ Sci Pollut Res 26:8402–8417.

  26. Jauregui E, Luyando E (1999) Global radiation attenuation by air pollution and its effects on the thermal climate in Mexico City. Int J Climatol 19:683–694

  27. Jimenez PA, Hacker JP, Dudhia J, Haupt SE, Ruiz-Arias JA, Gueymard CA, Thompson G, Eidhammer T, Deng A (2016) WRF-solar: description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull Am Meteorol Soc 97:1249–1264.

  28. Kasten F, Young AT (1989) Revised optical air mass and approximation formula. Appl Opt 28:4735–4738

  29. Khan B, Stenchikov G, Weinzierl B, Kalenderski S, Osipov S (2015) Dust plume formation in the free troposphere and aerosol size distribution during the Saharan mineral dust experiment in North Africa. Tellus B 2015(67):27170

  30. Kosmopoulos PG, Kazadzis S, Taylor M, Athanasopoulou E, Speyer O, Raptis PI, Marinou E, Proestakis E, Solomos S, Gerasopoulos E, Amiridis V, Bais A, Kontoes C (2017) Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmos Meas Tech 10:2435–2453

  31. Kuniyal JC, Guleria RP (2019) The current state of aerosol-radiation interactions: a mini review. J Aerosol Sci 130:45–54

  32. Kuzu SL, Saral A (2017) The effect of meteorological conditions on aerosol size distribution in Istanbul. Air Qual Atmos Health 10:1029–1038.

  33. Lee MM, Teuscher J, Miyasaka T, Murakamian TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647

  34. Li X, Maring H, Savoie D, Voss K, Prospero JM (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380:416–419

  35. Li KJ, Feng W, Xu JC, Gao PX, Yang LH, Liang HF, Zhan LS (2012) Why is the solar constant not a constant? Astrophys J 747:135.

  36. Mahowald N, Albani S, Kok JF, Engelstaeder S, Scanza R, Ward DS, Flanner MG (2014) The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res 15:53–71

  37. Meziane R, Diouri M, Ben-tayeb A (2019) Optical aerosol properties of megacities: inland and coastal cities comparison. Air Qual Atmos Health:1–9.

  38. Nam J, Kim SW, Park RJ, Park JS, Park SS (2018) Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia. Air Qual Atmos Health 11:49–60.

  39. Ndiaye A, Kébé CMF, Ndiaye PA, Charki A, Kobi A, Sambou V (2013) Impact of dust on the photovoltaic (PV) modules characteristics after an exposition year in Sahelian environment: the case of Senegal. Int J Phys Sci 8(21):1166–1173.

  40. Nipu NN, Saha A, Khan MF (2017) Effect of accumulated dust on the performance of solar PV module. Int J Eng Technol 6(1):9–12

  41. Nizar S, Dodamani BM (2019) Spatiotemporal distribution of aerosols over the Indian subcontinent and its dependence on prevailing meteorological conditions. Air Qual Atmos Health 12:503–517.

  42. Passos D, Brandao S, Lopes I (2007) On the luminosity evolution of the sun during the last 7 millennia. Adv Space Res 40:990–995

  43. Romano F, Ricciardelli E, Cimini D, Paola FD, Viggiano M (2013) Dust detection and optical depth retrieval using MSG-SEVIRI data. Atmosphere 4:35–47

  44. Shuangshuang S, Honglei W, Bin Z, Zhendong G (2019) Characterization of aerosol size distributions and chemical compositions under strong wind and stagnant conditions during haze episodes in Lin’an, China. Air Qual Atmos Health 12:1469–1481.

  45. Tahiri A, Diouri M, Steli H, Marsli I, Meziane R, Ben-tayeb A (2016) Desert aerosol optical properties in Morocco. Environ Sci Hikari Ltd 4:63–78.

  46. Tahiri A, Diouri M, Barkani J (2018) Optical properties of desert aerosol-I. J Mater Environ Sci 9(10):2870–2883

  47. Tesche M, Ansmann A, Müller D, Althausen D, Mattis I, Heese B, Freudenthaler V, Wiegner M, Esselborn M, Pisani G, Knippertz P (2009) Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B:144–164

  48. Trippetta S, Sabia S, Caggiano R (2016) Fine aerosol particles (PM1): natural and anthropogenic contributions and health risk assessment. Air Qual Atmos Health 9:621–629.

  49. Unsworth MH, Monteith JL (1972) Aerosol and solar radiation in Britain. Q J R Meteorol Soc 98:778–797.

  50. Verma S, Bhanja SN, Pani SK, Misra A (2014) Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment. Environ Sci Pollut Res 21:4977–4994.

  51. Wilson WE, Suh HH (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manage Assoc 47:1238–1249

  52. Yusoff ARM, Kim D, Schneider FK, da Silva WJ, Jang J (2015) Au-doped single layer graphene nanoribbons for a record-high efficiency ITO-free tandem polymer solar cells. Energy Environ Sci 8:1523–1537

  53. Zhang Y, Yu H, Eck TF, Smirnov A, Chin M, Remer LA, Bian H, Tan Q, Levy R, Holben BN, Piazzolla S (2012) Aerosol daytime variations over North and South America derived from multiyear AERONET measurements. J Geophys Res 117:D05211

Download references


The authors want to thank AERONET’s IPs: Stefan Wilbert, Emilio Cuevas-Agullo, Brent Holben, and Jeannette van den Bosch.

Author information

Correspondence to Abdelmoula Ben-tayeb.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben-tayeb, A., Diouri, M., Meziane, R. et al. Solar radiation attenuation by aerosol: application to solar farms. Air Qual Atmos Health 13, 259–269 (2020).

Download citation


  • Aerosol optical thickness
  • Atmospheric aerosol
  • Insolation
  • Size distribution
  • Sun photometer
  • Solar farm