Optical aerosol properties of megacities: inland and coastal cities comparison

  • Rajae MezianeEmail author
  • Mohammed Diouri
  • Abdelmoula Ben-tayeb


Measurements of aerosol optical depths allow the determination of microphysical and radiative characteristics of atmospheric aerosols and specially that of Megacities, which contribute to the deterioration of air quality live, increase health effects, and anthropogenic climate change. This paper analyzes the aerosol optical properties of ten megacities classified on inland and costal sites. The annual average of aerosol optical depths are around 0.5 and peaks can exceed 4 especially in summer for East Asia (Beijing and Bangkok) where the involvement of the anthropogenic aerosol is more important. Single scattering albedo is often greater than 0.8 and sometimes show wide variations between 0.6 and 0.98. The refractive index is constant and stands at 1.47 for the real part and 16 10−3 for its imaginary part. The PSDs are 0.16 μm for the fine mode and 2.3 μm for the coarse particle mode with a 3 μm magnification trend for the coastal sites. The volume concentrations are on average close to 0.1 μm3/μm2 for large particles and 0.04 μm3/μm2 for fines with peaks observed at Ilorin for large and at Beijing for fines. Radiative forcing are always negative (cooling trends), relatively low at the top of the atmosphere, larger at surface, and relatively higher at coastal sites. For the vertical atmospheric column, anthropogenic radiative forcing is always positive (warming trends) estimated average of + 14 W/m2 and natural registers three times increase for coastal sites. In reality, the coastal distinction is not at the origin of this increase since the maxima recorded are also included in the inland sites (Riyadh and Ilorin).


Aerosol optical depth Aerosol radiative forcing Particle size distribution Pollution Single scattering albedo Sun-photometer 



The authors would like to thank all PI of the AERONET studied sites: Juan Ramon Moreta Gonzalez (Madrid), Francois Ravetta (Paris), Brent Holben (Moscow and Riyadh), Zhengqiang Li (Beijing), Stephane Alfaro and Magdy Abdel Wahab (Cairo), SermJanjai (Bangkok), Sang-Woo Kim (Seoul), Enio B. Pereira (Brasilia), Rachel T. Pinker (Ilorin).


  1. Asmi A (2012) Natural and anthropogenic influences on tropospheric aerosol variability Division of Atmospheric Sciences Department of Physics Faculty of Science University of Helsinki, FinlandGoogle Scholar
  2. Cooke WF, Wilson JJN (1996) A global black carbon aerosol model. JGR Atmospheres 101(14, August 1996):19395–19409. CrossRefGoogle Scholar
  3. Che H, Xia X, Zhu J, Wang H, Wang Y, Sun J, Zhang X, Shi G (2015) Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ Sci Pollut Res 22:1043–1053. CrossRefGoogle Scholar
  4. Diouri M (2018) Atmosphère et climat … vers l’adaptation intelligente Volume I. Mohammed First University, Oujda, MoroccoGoogle Scholar
  5. Diouri M, Elhitmy M, Sanda IS, Jaenicke R, Kulzer S, Leiterer U, Schütz L, Schultz KH (1997) Indirect determination of particle size distribution using a sun photometer at Lidenberg (Germany) and Oujda (Morocco). J Aerosol Sci:S401–S402. CrossRefGoogle Scholar
  6. Diouri M, Sanda SI (1997) Deduction of particle size distribution from aerosol optical depth. CLEOPATRE-I code. J Aerosol Sci 28:S459CrossRefGoogle Scholar
  7. Dinter T., von Hoyningen-Huene W., Burrows J.P., Kokhanovsky A., Bierwirth E., Wendisch M., Müller D., Kahn R. and Diouri M.. Retrieval of aerosol optical thickness for desert conditions using MERIS observations during the SAMUM ca. J. Tellus, 61B, 7-238, 2009Google Scholar
  8. Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessment of aerosol optical properties retrieval from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res:9791–9806. CrossRefGoogle Scholar
  9. El Amraoui L, Diouri M, El Hitmy M, Jaenicke R, Schütz L, von Hoyningen-Huene W (2000) Aerosol optical parameters over North Eastern Morocco. J Aerosol Sci 31(0):277–278. CrossRefGoogle Scholar
  10. El Aouadi I. and Diouri M.. Aerosol radiative forcing at the surface in N.E. of Morocco. European Aerosol Conference EAC, 2005.Google Scholar
  11. Ban-Weiss GA, Lunden MM, Kirchstetter TW, Harley RA (2010) Size-resolved particle number and volume emission factors for on-road gasoline and diesel motor vehicles. J Aerosol Sci 41:512CrossRefGoogle Scholar
  12. Gharibzadeha M, Alam K, Abedinia Y, Bidokhtic AA, Masoumia A, Bibib H, Zeb B (2019) Journal of Atmospheric and Solar-Terrestrial Physics. Climatological analysis of the optical properties of aerosols and their direct radiative forcing in the Middle East 183:86–98. CrossRefGoogle Scholar
  13. Global energy data at your fingertips. International Energy Agency (IEA).
  14. Holben BN, Slutsker TFEI (1998) AERONET a federated instrument network and data archive for aerosol characterization. Remote Sens Environ:1–16. CrossRefGoogle Scholar
  15. IPPC (2014) Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  16. Saikia J, Roy S, Bordoloi M, Saikia P, Saikia BK (2018) Atmospheric aerosols around three different types of coal-based industries: emission parameters, cytotoxicity assay, and principal component analysis. J Aerosol Sci 126:21–32CrossRefGoogle Scholar
  17. Kim SG, Yoon S (2019) Measuring the value of airborne particulate matter reduction in Seoul. Air Qual Atmos Health 12:549–560. CrossRefGoogle Scholar
  18. Kim H-S, Chung Y-S, Yoon M-B (2015) An analysis on the impact of large-scale transports of dust pollution on air quality in East Asia as observed in central Korea in 2014. Air Qual Atmos Health 9(1):83–93. CrossRefGoogle Scholar
  19. Iqbal M (1983) An Introduction to solar Radiation. Academic Press, TorontoGoogle Scholar
  20. Marsli I, Diouri M, Steli H, El Khabbouti A (2019) Optical characterization of cloud and aerosol of the temperate zone Air Quality. Atmosphere & Health. CrossRefGoogle Scholar
  21. Mehta S, Shin H, Burnett R, North T, Cohen AJ (2013) Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 6(1):69–83. CrossRefGoogle Scholar
  22. Meziane R, Diouri M, Ben-Tayeb A (2014a) Aerosol radiative forcing determined for large urban areas, International Aerosol Conference, 2014. Bexco, Busan, KoreaGoogle Scholar
  23. Meziane R, Diouri M, Tanre D, Blarel L (2015) Comparaison des distributions globales des particules d’aérosol entre Lille et Oujda pour 2013. Congrès des aérosols, Paris, JanGoogle Scholar
  24. O’Neill MS, Breton CV, Devlin RB, Utell MJ (2011) Air pollution and health: emerging information on susceptible populations. Air Qual Atmos Health 5(2):189–201. CrossRefGoogle Scholar
  25. Meziane R, Diouri M, Steli H (2014b) Global aerosol PSD of urban areas. In: International Aerosol Conference, 2014. Korea, Bexco, BusanGoogle Scholar
  26. Meziane R, Diouri M, Marsli I (2014c) Aerosol optical thickness observed on the world’s top five cities. International Aerosol Conference, Bexco, Busan, KoreaGoogle Scholar
  27. Nosko O., Olofsson ULF. Effective density of airborne wear particles from car brake materials, J Aerosol Sci, Volume 107, May 2017, 94-106. CrossRefGoogle Scholar
  28. Park EH, Heo J, Hirakura S et al (2018) Characteristics of PM2.5 and its chemical constituents in Beijing, Seoul, and Nagasaki. Air Qual Atmos Health 11:1167. CrossRefGoogle Scholar
  29. Yu Q-R, Zhang F, Li J, Zhang J (2019) Analysis of sea-salt aerosol size distributions in radiative transfer. J Aer Sc 129:71–86. CrossRefGoogle Scholar
  30. Ramanathan V. and et al (2008). ABC regional assessment report with focus on Asia, UNEPGoogle Scholar
  31. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley and Sons, Inc, New YorkGoogle Scholar
  32. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349CrossRefGoogle Scholar
  33. Steli H, Diouri M, Marsli I, Meziane R (2017) Aerosol PSD and occurrence frequencies of clouds in the equatorial area. JMES 8(2):648–656Google Scholar
  34. Tahiri A, Diouri M (2015) Aerosol radiative forcing of desert regions. Environ Sci 3(1):17–29. CrossRefGoogle Scholar
  35. Tahiri A, Diouri M, Steli H, Marsli I, Meziane R, Ben-tayeb A (2016) Desert aerosol optical properties in Morocco. Environ Sci Hikari Ltd 4:63–78. CrossRefGoogle Scholar
  36. Tang G, Zhu X, Hu B, Xin J, Wang L, Münkel C, Mao G, Wang Y (2015) Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations. Atmos Chem Phys 15:12667–12680. CrossRefGoogle Scholar
  37. Twomey S (1979) Atmospheric Aerosol. Elsevier Scientific Publishing CompanyGoogle Scholar
  38. Zhang Y. and Rossow W.B.. ISCCP 25th Anniversary Symposium, NASA GISS, NYCGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rajae Meziane
    • 1
    Email author
  • Mohammed Diouri
    • 1
  • Abdelmoula Ben-tayeb
    • 1
  1. 1.Faculty of Sciences, Team of Atmospheric PhysicMohammed First UniversityOujdaMorocco

Personalised recommendations