Advertisement

Air Quality, Atmosphere & Health

, Volume 12, Issue 5, pp 613–625 | Cite as

Influence of dataset density on CO2 and CH4 trend calculation

  • Isidro A. PérezEmail author
  • M. Luisa Sánchez
  • M. Ángeles García
  • Nuria Pardo
  • Beatriz Fernández-Duque
Article
  • 82 Downloads

Abstract

Trend analysis requires long-time series of observations, the continuity of which is not usually obtained since gaps emerge linked to problems with the device or external reasons. This paper explores the influence of dataset density on the parameters involved in linear trends of CO2 and CH4 half-hourly observations and daily ranges measured at a semi-rural site over a 6-year period. Half-hourly observation trends were 2.40 and 0.0085 ppm year−1 for CO2 and CH4 respectively, and a noticeable value of 1.98 ppm year−1 was obtained for the CO2 daily range, whereas the CH4 daily range remained steady. Random samples of variable numbers of observations were extracted from these time series. Robust statistics of location, spread, symmetry and concentration of observations were calculated and fitted with a third-degree polynomial expression for half-hourly observations and a linear equation for the daily range. In general, medians and interquartile ranges provided the best fits. Confidence intervals were also obtained. Around 350 and 760 half-hourly observations for CO2 and CH4 provided 95% of statistically significant correlations at the 0.1% level. Finally, daily evolution revealed the contrast between the two trace gases where CO2 increased with a ramp during the night that ended with a cliff whereas a sinusoidal evolution was associated with CH4. Moreover, the interquartile range presented a daily cycle for CO2 but not for CH4.

Keywords

GHG trend Number of observations Statistics Time series Daily range 

Notes

Funding information

Financial support was received from the Ministry of Economy and Competitiveness and ERDF funds (project numbers CGL2009-11979 and CGL2014-53948-P).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest..

References

  1. Aref’ev VN, Akimenko RM, Kashin FV, Upenek LB (2016) Background component of methane concentration in surface air (Obninsk monitoring station). Izv Atmos Ocean Phys 52:37–44.  https://doi.org/10.1134/S0001433815060031 CrossRefGoogle Scholar
  2. Aref’ev VN, Kamenogradsky NY, Kashin FV, Shilkin AV (2014) Background component of carbon dioxide concentration in the near-surface air. Izv Atmos Ocean Phys 50:576–582.  https://doi.org/10.1134/S0001433814060036 CrossRefGoogle Scholar
  3. Artuso F, Chamard P, Piacentino S, Sferlazzo DM, De Silvestri L, di Sarra A, Meloni D, Monteleone F (2009) Influence of transport and trends in atmospheric CO2 at Lampedusa. Atmos Environ 43:3044–3051.  https://doi.org/10.1016/j.atmosenv.2009.03.027 CrossRefGoogle Scholar
  4. Ayalneh Berhanu T, Satar E, Schanda R, Nyfeler P, Moret H, Brunner D, Oney B, Leuenberger M (2016) Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland. Atmos Meas Tech 9:2603–2614.  https://doi.org/10.5194/amt-9-2603-2016 CrossRefGoogle Scholar
  5. Baldocchi D, Chu H, Reichstein M (2018) Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agric For Meteorol 249:520–533.  https://doi.org/10.1016/j.agrformet.2017.05.015 CrossRefGoogle Scholar
  6. Barthelmie RJ, Pryor SC (2003) Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? J Appl Meteorol 42:83–94.  https://doi.org/10.1175/1520-0450(2003)042<0083:CSSOOW>2.0.CO;2 CrossRefGoogle Scholar
  7. Bian L, Gao Z, Sun Y, Ding M, Tang J, Schnell RC (2016) CH4 monitoring and background concentration at Zhongshan Station, Antarctica. Atmos Clim Sci 6:135–144  https://doi.org/10.4236/acs.2016.61012 Google Scholar
  8. Braden-Behrens J, Yan Y, Knohl A (2017) A new instrument for stable isotope measurements of 13C and 18O in CO2—instrument performance and ecological application of the Delta Ray IRIS analyzer. Atmos Meas Tech 10:4537–4560.  https://doi.org/10.5194/amt-10-4537-2017 CrossRefGoogle Scholar
  9. Contescu L (2012) 600 million years of climate change; a critique of the anthropogenic global warming hypothesis from a time-space perspective. Geo-Eco Marina 18(5):25Google Scholar
  10. Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapour. Appl Phys B-Lasers Opt 92:403–408.  https://doi.org/10.1007/s00340-008-3135-y CrossRefGoogle Scholar
  11. Fang SX, Tans PP, Dong F, Zhou H, Luan T (2016) Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China. Atmos Environ 131:1–8.  https://doi.org/10.1016/j.atmosenv.2016.01.044 CrossRefGoogle Scholar
  12. Fang SX, Zhou LX, Tans PP, Ciais P, Steinbacher M, Xu L, Luan T (2014) In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos Chem Phys 14:2541–2554.  https://doi.org/10.5194/acp-14-2541-2014 CrossRefGoogle Scholar
  13. Fernández-Duque B, Pérez IA, Sánchez ML, García MA, Pardo N (2017) Temporal patterns of CO2 and CH4 in a rural area in northern Spain described by a harmonic equation over 2010-2016. Sci Total Environ 593-594:1–9.  https://doi.org/10.1016/j.scitotenv.2017.03.132 CrossRefGoogle Scholar
  14. Gama C, Monteiro A, Pio C, Miranda AI, Baldasano JM, Tchepel O (2018) Temporal patterns and trends of particulate matter over Portugal: a long-term analysis of background concentrations. Air Qual Atmos Health 11:397–407.  https://doi.org/10.1007/s11869-018-0546-8 CrossRefGoogle Scholar
  15. García MA, Sánchez ML, Pérez IA, Ozores MI, Pardo N (2016) Influence of atmospheric stability and transport on CH4 concentrations in northern Spain. Sci Total Environ 550:157–166.  https://doi.org/10.1016/j.scitotenv.2016.01.099 CrossRefGoogle Scholar
  16. Geddes JA, Martin RV, Boys BL, van Donkelaar A (2016) Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ Health Perspect 124:281–289.  https://doi.org/10.1289/ehp.1409567 CrossRefGoogle Scholar
  17. Halios CH, Flocas HA, Helmis CG, Asimakopoulos DN, Mouschouras PG (2018) Observations of local meteorological variability under large-scale circulation patterns over Athens, Greece. Atmosphere 9(15).  https://doi.org/10.3390/atmos9010025
  18. Haszpra L, Barcza Z, Hidy D, Szilágyi I, Dlugokencky E, Tans P (2008) Trends and temporal variations of major greenhouse gases at a rural site in Central Europe. Atmos Environ 42:8707–8716.  https://doi.org/10.1016/j.atmosenv.2008.09.012 CrossRefGoogle Scholar
  19. Inoue HY, Matsueda H, Igarashi Y, Sawa Y, Wada A, Nemoto K, Sartorius H, Schlosser C (2006) Seasonal and long-term variations in atmospheric CO2 and 85Kr in Tsukuba, central Japan. J Meteorol Soc Jpn 84:959–968.  https://doi.org/10.2151/jmsj.84.959 CrossRefGoogle Scholar
  20. Kim HS, Chung YS, Tans PP (2014) A study on carbon dioxide concentrations and carbon isotopes measured in East Asia during 1991-2011. Air Qual Atmos Health 7:173–179.  https://doi.org/10.1007/s11869-014-0246-y CrossRefGoogle Scholar
  21. Kim HS, Chung YS, Tans PP, Dlugokencky EJ (2015b) Decadal trends of atmospheric methane in East Asia from 1991 to 2013. Air Qual Atmos Health 8:293–298.  https://doi.org/10.1007/s11869-015-0331-x CrossRefGoogle Scholar
  22. Kim SY, Lee SD, Lee JB, Kim DR, Han JS, Choi KH, Song CK (2015a) Analysis of long-range transport of carbon dioxide and its high concentration events over East Asian region using GOSAT data and GEOS-Chem modelling. Adv Meteorol 2015, art. no. 680264:1–13.  https://doi.org/10.1155/2015/680264 Google Scholar
  23. Krishnapriya M, Chandra AB, Nayak RK, Patel NR, Rao PVN, Dadhwal VK (2018) Seasonal and inter-annual variability of atmosphere CO2 based on NOAA Carbon Tracker analysis and satellite observations. J Indian Soc Remote Sens 46:309–320.  https://doi.org/10.1007/s12524-017-0688-4 CrossRefGoogle Scholar
  24. Liu M, Wu J, Zhu X, He H, Jia W, Xiang W (2015) Evolution and variation of atmospheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy covariance measurements. Atmos Environ 114:75–82.  https://doi.org/10.1016/j.atmosenv.2015.05.026 CrossRefGoogle Scholar
  25. Nomura S, Mukai H, Terao Y, Machida T, Nojiri Y (2017) Six years of atmospheric CO2 observations at Mt. Fuji recorded with a battery-powered measurement system. Atmos Meas Tech 10:667–680.  https://doi.org/10.5194/amt-10-667-2017 CrossRefGoogle Scholar
  26. Pérez IA, Sánchez ML, García MA, Pardo N (2015) Daily patterns of CO2 in the lower atmosphere of a rural site. Theor Appl Climatol 122:195–205.  https://doi.org/10.1007/s00704-014-1294-9 CrossRefGoogle Scholar
  27. Ruzmaikin A, Aumann HH, Pagano TS (2012) Patterns of CO2 variability from global satellite data. J Clim 25:6383–6393.  https://doi.org/10.1175/JCLI-D-11-00223.1 CrossRefGoogle Scholar
  28. Sánchez ML, García MA, Pérez IA, Pardo N (2014) CH4 continuous measurements in the upper Spanish plateau. Environ Monit Assess 186:2823–2834.  https://doi.org/10.1007/s10661-013-3583-7 CrossRefGoogle Scholar
  29. Shusterman AA, Teige VE, Turner AJ, Newman C, Kim J, Cohen RC (2016) The Berkeley Atmospheric CO2 Observation Network: initial evaluation. Atmos Chem Phys 16:13449–13463.  https://doi.org/10.5194/acp-16-13449-2016 CrossRefGoogle Scholar
  30. Singh Mahata K, Kumar Panday A, Rupakheti M, Singh A, Naja M, Lawrence MG (2017) Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas. Atmos Chem Phys 17:12573–12596.  https://doi.org/10.5194/acp-17-12573-2017 CrossRefGoogle Scholar
  31. Sreenivas G, Mahesh P, Subin J, Lakshmi Kanchana A, Venkata Narasimha Rao P, Kumar Dadhwal V (2016) Influence of meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India. Atmos Chem Phys 16:3953–3967.  https://doi.org/10.5194/acp-16-3953-2016 CrossRefGoogle Scholar
  32. Sun Y, Bian L, Tang J, Gao Z, Lu C, Schnell RC (2014) CO2 monitoring and background mole fraction at Zhongshan station, Antarctica. Atmosphere 5:686–698.  https://doi.org/10.3390/atmos5030686 CrossRefGoogle Scholar
  33. Timokhina AV, Prokushkin AS, Onuchin AA, Panov AV, Kofman GB, Verkhovets SV, Heimann M (2015) Long-term trend in CO2 concentration in the surface atmosphere over Central Siberia. Russ Meteorol Hydrol 40:186–190.  https://doi.org/10.3103/S106837391503005X CrossRefGoogle Scholar
  34. Turner AJ, Frankenberg C, Wennberg PO, Jacob DJ (2017) Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc Natl Acad Sci U S A 114:5367–5372.  https://doi.org/10.1073/pnas.1616020114 CrossRefGoogle Scholar
  35. Verhulst KR, Karion A, Kim J, Salameh PK, Keeling RF, Newman S, Miller J, Sloop C, Pongetti T, Rao P, Wong C, Hopkins FM, Yadav V, Weiss RF, Duren RM, Miller CE (2017) Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project—part 1: calibration, urban enhancements, and uncertainty estimates. Atmos Chem Phys 17:8313–8341.  https://doi.org/10.5194/acp-17-8313-2017 CrossRefGoogle Scholar
  36. Vermeulen AT, Hensen A, Popa ME, van den Bulk WCM, Jongejan PAC (2011) Greenhouse gas observations from Cabauw Tall Tower (1992-2010). Atmos Meas Tech 4:617–644.  https://doi.org/10.5194/amt-4-617-2011 CrossRefGoogle Scholar
  37. WDCGG (World Data Centre for Greenhouse Gases) (2018) http://ds.data.jma.go.jp/gmd/wdcgg/(accessed 20 February 2018)
  38. Wu J, Zha J, Zhao D, Yang Q (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Clim Dyn 51:2039–2078.  https://doi.org/10.1007/s00382-017-3997-y CrossRefGoogle Scholar
  39. Xu HH, Pu JJ, He J, Liu J, Qi B, Du RG (2016) Characteristics of atmospheric compositions in the background area of Yangtze River Delta during heavy air pollution episode. Adv Meteorol 2016, art. no. 7240486:1–13.  https://doi.org/10.1155/2016/7240486 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Isidro A. Pérez
    • 1
    Email author
  • M. Luisa Sánchez
    • 1
  • M. Ángeles García
    • 1
  • Nuria Pardo
    • 1
  • Beatriz Fernández-Duque
    • 1
  1. 1.Department of Applied Physics, Faculty of SciencesUniversity of ValladolidValladolidSpain

Personalised recommendations