Advertisement

Air Quality, Atmosphere & Health

, Volume 12, Issue 1, pp 21–32 | Cite as

Atmospheric pollutants: modeling with Aermod software

  • Joaci dos Santos Cerqueira
  • Helder Neves de Albuquerque
  • Francisco de Assis Salviano de Sousa
Article
  • 62 Downloads

Abstract

In the operation of thermoelectric power plants, fossil fuels are burned, generating air pollutants such as carbon monoxide (CO), nitrogen oxide (NOX), particulate matter (PM), sulfur dioxide (SO2), and volatile organic compounds (VOCs). Accordingly, the objective of this study was to simulate the dispersion of atmospheric pollutants from the Borborema S.A thermal power plant, using the Aermod View program as a tool to evaluate the concentrations resulting from the simulation and to make comparisons with allowable levels according to current law. Thus, the emission sources of chimney air pollutants of a thermal power plant in 2016 were evaluated using the Aermod View, Aermet View, and WRPLOT View software. Regarding the pollutants generated, NOx values at 1 h showed NO2 concentration over the primary and secondary standards allowed by law, with a maximum concentration of 1680 μg/m3, about five times higher than the primary standard and eight times the secondary. The simulation indices for the concentrations of PM, SOx, NOx, and CO, even though they are appeared very low, except NO2 at 1 h, it was observed that these pollutants can affect the health of the local population, fauna and flora, in view of the process of bioaccumulation, which is inherent to organisms, which directly or indirectly absorb substances or chemical compounds.

Keywords

Pollution Human health Environmental health Environmental degradation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adesanmi AJ, Adeniran JA, Fakinle BS, Jimoda LA, Yusuf RO, Sonibare JA (2016) Ground level concentration of some air pollutants from Nigeria thermal power plants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(16):2426–2432.  https://doi.org/10.1080/15567036.2015.1081996 CrossRefGoogle Scholar
  2. Ambimet monitoramentos ambientais (2016) Relatório Técnico das Emissões Atmosféricas das Chaminés dos Geradores – Projeto 000361-15 Rev. 1Google Scholar
  3. Atabi F, Jafarigol F, Moattar F, Nouri J (2016) Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery. Environ Monit Assess 188(9):516.  https://doi.org/10.1007/s10661-016-5508-8 CrossRefGoogle Scholar
  4. Atash F (2007) The deterioration of urban environments in developing countries: mitigating the air pollution crisis in Tehran, Iran. Cities 24(6):399–409.  https://doi.org/10.1016/j.cities.2007.04.001 CrossRefGoogle Scholar
  5. Brasil Conselho Nacional do Meio Ambiente – CONAMA (1990) Resolução n. 3, de 28 de junho de 1990. Dispõe sobre padrões de qualidade do ar, previstos no PRONAR. Diário Oficial da União, Brasília, DF, 22 de agosto de 1990, 1:15937–15939Google Scholar
  6. Brasil Conselho Nacional do Meio Ambiente – CONAMA (2006) Resolução n. 382, de 26 de dezembro de 2006. Publicada em 17 de dezembro de 2006. 1983. Diário Oficial da União, Brasília, DF, 2 de janeiro de 2007, 1:131–137Google Scholar
  7. Brasil Governo do Brasil (2013) Infraestrutura. Campina Grande (PB) recebe 1.488 unidades habitacionais. 2013. BrasilGovWeb. http://www.brasil.gov.br/infraestrutura/2013/12/campina-grande-pb-recebe-1-488-unidades-do-minha-casa-minha-vida. Acessado em 27 de dezembro de 2017
  8. Brasil Infraero (2016) Aeroporto de Campina Grande - Presidente João Suassuna. Características. InfraeroWeb. http://www4.infraero.gov.br/aeroportos/aeroporto-de-campina-grande-presidente-joao-suassuna/sobre-o-aeroporto/caracteristicas. Accessed 13 December 2017
  9. Campina Grande Município (2017) Prefeitura de Campina Grande-PB. PmcgWeb. http://campinagrandepb.com.br/prefeito-faz-visita-ao-hospital-da-crianca-e-destaca-ampliacao-do-servico. Acessed 21 december 2017
  10. Castro HA, Cunha MF, Mendonça GAS, Junger WL, Cunha-Cruz J, Leon AP (2009) Efeitos da poluição do ar na função respiratória de escolares, Rio de Janeiro. RJ Rev Saúde Pública 43(1):26–34.  https://doi.org/10.1590/S0034-89102009000100004 CrossRefGoogle Scholar
  11. Cetesb Companhia Ambiental do Estado de São Paulo (2001) Secretaria de Estado do Meio Ambiente. Qualidade do Ar – Informações. CetesbWeb. http://sistemasinter.cetesb.sp.gov.br/Ar/ar_saude.asp#mp. Acesso em 16 de dezembro de 2017
  12. Consultoria Ambiental Ltda (2008) Estudo de impacto ambiental e relatório de Impacto ambiental – EIA/RIMA - Usina Termelétrica Borborema S/AGoogle Scholar
  13. Cpcb 2009 Guidelines for national ambient air quality monitoring, NAAQM, India Ministry of Environment and Forests MpcbgovWeb http://mpcbgovin/images/pdf/Ambient_Air_quality_Monitoring_Guidlinespdf. Accessed 20 August 2017
  14. D’Amato G, Vitale C, Martino A, Viegi G, Lanza M, Molino A, Sanduzzi A, Vatrella A, Annesi-Maesano I, D’Amato M (2015) Effects on asthma and respiratory allergy of climate change and air pollution. Multidiscip Respir Med 10:10–39.  https://doi.org/10.1186/s40248-015-0036-x CrossRefGoogle Scholar
  15. Dutra JCC et al (2012) Simulação da dispersão de poluentes emitidos por uma usina termoelétrica de 532m nordeste brasileiro. In: VII Congresso Nacional de Engenharia MecânicaGoogle Scholar
  16. Ebi KL, Mcgregor G (2008) Climate change, tropospheric ozone and particulate matter, and health impacts. Environ Health Perspect 116(11):1449–1455.  https://doi.org/10.1289/ehp.11463 CrossRefGoogle Scholar
  17. Fundação Assistencial da Paraíba FAP (2016) Atendimentos de radioterapia. Hospitaldafaporgweb http://wwwhospitaldafaporgbr/.Accessed 16 December 2017
  18. Gavidia T, Pronczuk J, Sly P (2009) Environmental impacts on the respiratory health of children: global burden of pediatric respiratory diseases linked to the environment. Rev Chil Enf Respir 25(99):108.  https://doi.org/10.1186/1471-2431-9-10 Google Scholar
  19. Ghelfi E (2011) Poluição do Ar, espécies reativas de oxigênio (ROS), e autonómico Estresse Interações Sistema Modular Cardiac oxidativo e eletrofisiológica alterações. Tópicos Avançados em Estudos de Caso de Saúde Ambiental e Poluição do Ar. Anca Maria Moldoveanu, IntechOpen.  https://doi.org/10.5772/18454
  20. Gumede PR, Savage MJ (2017) Respiratory health effects associated with indoor particulate matter (PM2.5) in children residing near a landfill site in Durban, South Africa. Air Qual Atmos Health 10:853–860.  https://doi.org/10.1007/s11869-017-0475-y CrossRefGoogle Scholar
  21. Gupta A, Gupta GS (2016) Role of air samplers for monitoring of ambient air quality. IJART 1(1):51–59Google Scholar
  22. Hei International Scientific Oversight Committee (2004) Health effects of outdoor air pollution in developing countries of Asia: a literature review. Health Effects Institute, BostonGoogle Scholar
  23. Holnicki P, Nahorski Z (2015) Emission data uncertainty in urban air quality modeling -case study. Environ Model Assess 20(6):583–597.  https://doi.org/10.1007/s10666-015-9445-7 CrossRefGoogle Scholar
  24. Ibge Instituto Brasileiro de Geografia e Estatística (2010a) Cidades – Queimadas-PB. IbgegovWeb. http://www.ibge.gov.br/cidadesat/painel/painel.php?codmun=251250. Accessed 18 August 2017
  25. Ibge Instituto Brasileiro de Geografia e Estatística (2010b) Cidades Campina Grande-PB. IbgegovWeb http://wwwibgegovbr/cidadesat/painel/painelphp?codmun=251250. Accessed 17 August 2017
  26. Khodakarami J, Ghobadi P (2016) Urban pollution and solar radiation impacts. Renew Sust Energ Rev 57:965–976.  https://doi.org/10.1016/j.rser.2015.12.166 CrossRefGoogle Scholar
  27. Kukadia V, Upton S, Hall D (2003) Control of dust from construction and demolition activities. Building Research Establishment, WatfordGoogle Scholar
  28. Lakes Environmental (2017). Notes course Aermod course Gaussian plume air dispersion model. Lakes Environmental SoftwareGoogle Scholar
  29. Lateb M, Meroney RN, Yataghene M, Fellouah H, Saleh F, Boufadel MC (2015) On the use of numerical modelling for near-field pollutant dispersion in urban environments - a review. Environ Pollut 208:271–283.  https://doi.org/10.1016/j.envpol.2015.07.039 CrossRefGoogle Scholar
  30. Laumbach RJ, Kipen HM (2012) Respiratory health effects of air pollution: update on biomass smoke and traffic pollution. J Allergy Clin Immunol 129(1):3–13.  https://doi.org/10.1016/j.jaci.2011.11.021 CrossRefGoogle Scholar
  31. Mactec (2011). Emissions, Meteorological Data, and Air Pollutant Monitoring for Alaska’s North Slope. Prepared for Alaska Department of Enbironmental conservation by MACTEC Engineering and Consulting, Research Triangle Park, North Carolina. DecAlaskagovWeb. http://dec.alaska.gov/air/ap/docs/North_Slope_Energy_Assessment_FINAL.pdf. Acessed 28 August 2017
  32. Mehta S, Ngo LH, Van Dzung D et al (2013) Air pollution and admissions for acute lower respiratory infections in young children of Ho Chi Minh City. Air Qual Atmos Health 6:167–179.  https://doi.org/10.1007/s11869-011-0158-z CrossRefGoogle Scholar
  33. Paraíba State Brasil (2013). Conselho Estadual de Direitos Humanos da Paraíba (CEDH/PB). Relatório de visita JusbrasilWeb https://pr-pbjusbrasilcombr/noticias/100586162/cedh-pb-divulga-relatorio-de-visita-ao-presidio-serrotao-e-faz-recomendacoes-ao-estado. Accessed 18 December 2017
  34. Paraíba State Brasil (2015) Universidade Estadual da Paraíba – UEPB. Gestão de Pessoas - Assessoria de Sistematização de Informações Transparência – Portal Transparência UepbWeb http://transparenciauepbedubr/ uepbedubr download/arquivos_diversos/quadro-de-servidorespdf. Accessed 19 December 2017
  35. Paraíba State Brasil (2017) Governo da Paraíba. Notícias - Trauma de Campina Grande ParaibapbgovWeb http://paraibapbgovbr/trauma-de-campina-grande-chega-a-mais-de-71-mil-atendimentos-em-2017/. Accessed 18 December 2017
  36. Paz SR, Alves RCM, Teixeira EC, Dallarosa JB (2007) Utilização de Modelagem Numérica para o estudo da dispersão de poluentes emitidos pela Usina Termoelétrica Presidente Médici. Química Nova 30(7):1609–1615.  https://doi.org/10.1590/S0100-40422007000700021 CrossRefGoogle Scholar
  37. Prenni AJ, Sive BC, Morris KH, Schichtel BA (2015) Air quality monitoring strategy. Natural Resource Report NPS/NRSS/ARD//NRR-2015/909. National Park Service, Fort Collins, ColoradoGoogle Scholar
  38. Ravina M (2016) Development and application of a comprehensive methodology for the analysis of global and local emissions of energy systems. Thesis, Politecnico di Torino, Porto Institutional RepositoryGoogle Scholar
  39. Resende F (2007) Poluição atmosférica por emissão de material particulado: avaliação e controle nos canteiros de obras de edifícios. Dissertation, Escola Politécnica da Universidade de São PauloGoogle Scholar
  40. Rosa AFM (2012) Modelagem da concentração de dióxido de enxofre na região de Candiota- RS utilizando o Modelo AERMOD. Dissertation, Universidade Federal do Rio Grande do SulGoogle Scholar
  41. Seangkiatiyuth K, Surapipith V, Tantrakarnapa K, Lothongkum AW (2011) Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. J Environ Sci 23(6):931–940.  https://doi.org/10.1016/S1001-0742(10)60499-8 CrossRefGoogle Scholar
  42. Siddique S, Ray MR, Lahiri T (2011) Effects of air pollution on the respiratory health of children: a study in the capital city of India. Air Qual Atmos Health 4:95–102.  https://doi.org/10.1007/s11869-010-0079-2 CrossRefGoogle Scholar
  43. UFCG (2015) Secretaria de Recursos Humanos. Disponível UfcgWeb. http://www.ufcg.edu.br/prt_ufcg/secretarias/srh/srh.php. Acessado em 19 de dezembro de 2017
  44. U.S. Environmental Protection Agency – EPA (1997) Ecological risk assessment guidance for superfund: process for designing and conducting ecological risk assessments. Interim Final. Environmental Response Team, New JerseyGoogle Scholar
  45. Ugarte-Avilés T, Manterola C, Cartes-Velásquez R, Tamara Otzen T (2017) Impact of proximity of thermoelectric power plants on bronchial obstructive crisis rates. BMC Public Health 17(1):96.  https://doi.org/10.1186/s12889-016-4008-7 CrossRefGoogle Scholar
  46. US. Environmental Protection Agency – EPA (2006) Particle pollution and health. US EPA, United StatesGoogle Scholar
  47. US. Environmental Protection Agency EPA (1999) Office of Solid Waste EPA 530-D-99-001A. US EPAGoogle Scholar
  48. Yang Z, Wang J (2017) A new air quality monitoring and early warning system: air quality assessment and air pollutant concentration prediction. Environ Res 158:105–117.  https://doi.org/10.1016/j.envres.2017.06.002 CrossRefGoogle Scholar
  49. Yassin MF (2010) Evaluating the impacts of SO2 emissions from power stations in Kuwait. WIT Trans Ecol Environ 136:59–70.  https://doi.org/10.2495/AIR100061 Google Scholar
  50. Zemp E, Elsasser S, Schindler C, Kunzli N, Perruchoud AP, Domenighetti G, Medici T, Ackermann-Liebrich U, Leuenberger P, Monn C, Zellweger JP (1999) Longterm ambient air pollution and respiratory symptoms in adults (SAPALDIA study). The SAPALDIA team. Am J Respir Crit Care Med 159(4):1257–1266.  https://doi.org/10.1164/ajrccm.159.4.9807052 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Joaci dos Santos Cerqueira
    • 1
  • Helder Neves de Albuquerque
    • 1
  • Francisco de Assis Salviano de Sousa
    • 1
  1. 1.Federal University of Campina Grande (UFCG), Post-graduate Program in Natural Resources of the UFCGCampina GrandeBrazil

Personalised recommendations