Advertisement

Air Quality, Atmosphere & Health

, Volume 11, Issue 7, pp 815–824 | Cite as

An urban air quality modeling system to support decision-making: design and implementation

  • H. Relvas
  • A. I. Miranda
Article

Abstract

This paper describes the design and application of a modeling system capable of rapidly supporting decision-makers regarding urban air quality strategies, in particular, providing emission and concentration maps, as well as external costs (mortality and morbidity) due to air pollution, and total implementation costs of improvement measures. Results from a chemical transport model are used to train artificial neural networks and link emission of pollutant precursors and urban air quality. A ranking of different emission scenarios is done based on multi-criteria decision analysis (MCDA), which includes economic and social aspects. The Integrated Urban Air Pollution Assessment Model (IUAPAM) was applied to the Porto city (Portugal) and results show that it is possible to reduce the number of premature deaths per year attributable to particulate matter (PM10), from 1300 to 1240 (5%), with an investment of 0.64 M€/year, based on fireplace replacements.

Keywords

Decision-making Air quality management Artificial neural networks Multi-criteria decision analysis Integrated assessment modeling 

Notes

Funding information

This study received a financial support from CESAM (UID/AMB/50017 - POCI-01-0145-FEDER-007638), FCT/MCTES through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. This study also received support from Enrico Turrini and Marialuisa Volta from the University of Brescia (Italy). This study received another financial support from FEDER through the COMPETE Programme and the national funds from FCT—Science and Technology Portuguese Foundation for the Ph.D. grant of H. Relvas (SFRH/BD/101660/2014).

References

  1. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Nguyen B, Posch M, Rafaj P, Sandler R, Schöpp W, Wagner F, Winiwarter W (2011) Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ Model Softw 26:1489–1501.  https://doi.org/10.1016/j.envsoft.2011.07.012 CrossRefGoogle Scholar
  2. Anderson HR, Favarato G, Atkinson RW (2013) Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Health 6:47–56.  https://doi.org/10.1007/s11869-011-0144-5 CrossRefGoogle Scholar
  3. Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) PROMETHEE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 200:198–215.  https://doi.org/10.1016/j.ejor.2009.01.021 CrossRefGoogle Scholar
  4. Borrego C, Valente J, Carvalho A, Sa E, Lopes M, Miranda AI (2010) Contribution of residential wood combustion to PM10 levels in Portugal. Atmos Environ 44:642–651.  https://doi.org/10.1016/j.atmosenv.2009.11.020 CrossRefGoogle Scholar
  5. Brans JP, Mareschal B (1994) The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis Support Syst 12:297–310.  https://doi.org/10.1016/0167-9236(94)90048-5 CrossRefGoogle Scholar
  6. Brans JP, Vincke P (1985) Note—a preference ranking organisation method: the PROMETHEE method for multiple criteria decision-making. Manag Sci 31:647–656.  https://doi.org/10.1287/mnsc.31.6.647 CrossRefGoogle Scholar
  7. Carnevale C, Finzi G, Pisoni E, Volta M, Guariso G, Gianfreda R, Maffeis G, Thunis P, White L, Triacchini G (2012a) An integrated assessment tool to define effective air quality policies at regional scale. Environ Model Softw 38:306–315.  https://doi.org/10.1016/j.envsoft.2012.07.004 CrossRefGoogle Scholar
  8. Carnevale C, Finzi G, Guariso G, Pisoni E, Volta M (2012b) Surrogate models to compute optimal air quality planning policies at a regional scale. Environ Model Softw 34:44–50.  https://doi.org/10.1016/j.envsoft.2011.04.007 CrossRefGoogle Scholar
  9. Castro A, Künzli N, Götschi T (2017) Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the agglomeration Lausanne-Morges. Int J Hyg Environ Health 220:829–839.  https://doi.org/10.1016/j.ijheh.2017.03.012 CrossRefGoogle Scholar
  10. CCDR-LVT (2006) Plans and programmes to improve air quality in the region of Lisbon and Tagus Valley. Lisbon Regional Coordination and Development Commission. (pp. 234). LisbonGoogle Scholar
  11. Clappier A, Pisoni E, Thunis P (2015) A new approach to design source–receptor relationships for air quality modelling. Environ Model Softw 74:66–74.  https://doi.org/10.1016/j.envsoft.2015.09.007 CrossRefGoogle Scholar
  12. Costa S, Ferreira J, Silveira C, Costa C, Lopes D, Relvas H, Borrego C, Roebeling P, Miranda AI, Teixeira JP (2014) Integrating health on air quality assessment—review report on health risks of two major European outdoor air pollutants: PM and NO2. J Toxicol Environ Health Part B 17:307–340.  https://doi.org/10.1080/10937404.2014.946164 CrossRefGoogle Scholar
  13. Desaigues B, Ami D, Bartczak A, Braun-Kohlová M, Chilton S, Czajkowski M, Farreras V, Hunt A, Hutchison M, Jeanrenaud C, Kaderjak P, Máca V, Markiewicz O, Markowska A, Metcalf H, Navrud S, Nielsen JS, Ortiz R, Pellegrini S, Rabl A, Riera R, Scasny M, Stoeckel ME, Szántó R, Urban J (2011) Economic valuation of air pollution mortality: a 9-country contingent valuation survey of value of a life year (VOLY). Ecol Indic 1:902–910.  https://doi.org/10.1016/j.ecolind.2010.12.006 CrossRefGoogle Scholar
  14. Dias D, Tchepel O, Carvalho A, Miranda AI, Borrego C (2012) Particulate matter and health risk under a changing climate: assessment for Portugal. Sci World J 2012(409546):1–10.  https://doi.org/10.1100/2012/409546 CrossRefGoogle Scholar
  15. Duque L, Relvas H, Silveira C, Ferreira J, Monteiro A, Gama C, Rafael S, Freitas S, Borrego C, Miranda AI (2016) Evaluating strategies to reduce urban air pollution. Atmos Environ 127:196–204.  https://doi.org/10.1016/j.atmosenv.2015.12.043 CrossRefGoogle Scholar
  16. EEA (2011) The application of models under the European Union’s Air Quality Directive: A technical reference guide, EEA Technical report No 10/2011, European Environment AgencyGoogle Scholar
  17. EEA (2017) Air quality in Europe—2017 report, EEA Report No 13/2017, European Environment AgencyGoogle Scholar
  18. Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of ELECTRE methods and their recent extensions. J Multicrit Decis Anal 20:61–85.  https://doi.org/10.1002/mcda.1482 CrossRefGoogle Scholar
  19. Gama C, Monteiro A, Pio C, Miranda AI, Baldasano JM, Tchepel O (2018) Temporal patterns and trends of particulate matter over Portugal: a long-term analysis of background concentrations. Air Qual Atmos Health 1–11:397–407.  https://doi.org/10.1007/s11869-018-0546-8 CrossRefGoogle Scholar
  20. Hurley PJ, Physick WL, Luhar AK (2005) TAPM: a practical approach to prognostic meteorological and air pollution modelling. Environ Model Softw 20:737–752.  https://doi.org/10.1016/j.envsoft.2004.04.006 CrossRefGoogle Scholar
  21. Karvosenoja N, Kangas L, Kupiainen K, Kukkonen J, Karppinen A, Sofiev M, Tainio M, Paunu VV, Ahtoniemi P, Tuomisto JT, Porvari P (2010) Integrated modeling assessments of the population exposure in Finland to primary PM2.5 from traffic and domestic wood combustion on the resolutions of 1 and 10 km. Air Qual Atmos Health 4:179–188.  https://doi.org/10.1007/s11869-010-0100-9 CrossRefGoogle Scholar
  22. Kiker GA, Bridges TS, Varghese A, Seager TP, Linkov I (2005) Application of multicriteria decision analysis in environmental decision making. Integr Environ Assess Manag 1:95–108.  https://doi.org/10.1897/IEAM_2004a-015.1 CrossRefGoogle Scholar
  23. Kuenen JP, Visschedijk AH, Jozwicka M, Denier C (2014) TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos Chem Phys 14:10963–10976.  https://doi.org/10.5194/acp-14-10963-2014 CrossRefGoogle Scholar
  24. Lelieveld J, Evans J, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371.  https://doi.org/10.1038/nature15371 CrossRefGoogle Scholar
  25. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260.  https://doi.org/10.1016/S0140-6736(12)61766-8 CrossRefGoogle Scholar
  26. Miranda AI, Relvas H, Viaene P, Janssen S, Brasseur O, Carnevale C, Declerck P, Maffeis G, Turrini E, Volta M (2016) Applying integrated assessment methodologies to air quality plans: two European cases. Environ Sci Pol 65:29–38.  https://doi.org/10.1016/j.envsci.2016.04.010 CrossRefGoogle Scholar
  27. Mustajoki J, Marttunen M (2017) Comparison of multi-criteria decision analytical software for supporting environmental planning processes. Environ Model Softw 93:78–91.  https://doi.org/10.1016/j.envsoft.2017.02.026 CrossRefGoogle Scholar
  28. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I (2014) Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93.  https://doi.org/10.1093/eurheartj/ehu458 CrossRefGoogle Scholar
  29. Relvas H, Miranda AI, Carnevale C, Maffeis G, Turrini E, Volta M (2017) Optimal air quality policies and health: a multi-objective nonlinear approach. Environ Sci Pollut Res 24:1–13.  https://doi.org/10.1007/s11356-017-8895-7 CrossRefGoogle Scholar
  30. Roy B (1990) The outranking approach and the foundations of ELECTRE methods. Readings in multiple criteria decision aid. Springer, Berlin, pp 155–183CrossRefGoogle Scholar
  31. Seibert P, Frank A (2004) Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos Chem Phys 4:51–63.  https://doi.org/10.5194/acp-4-51-2004 CrossRefGoogle Scholar
  32. Silva RA, West JJ, Lamarque JF, Shindell DT, Collins WJ, Faluvegi G, Folberth GA, Horowitz LW, Nagashima T, Naik V (2017) Future global mortality from changes in air pollution attributable to climate change. Nat Clim Chang 7:647–651.  https://doi.org/10.1038/nclimate3354 CrossRefGoogle Scholar
  33. Thokala P, Duenas A (2012) Multiple criteria decision analysis for health technology assessment. Value Health 15:1172–1181.  https://doi.org/10.1016/j.jval.2012.06.015 CrossRefGoogle Scholar
  34. Thokala P, Devlin N, Marsh K, Baltussen R, Boysen M, Kalo Z, Longrenn T, Mussen F, Peacock S, Watkins J, Ijzerman M (2016) Multiple criteria decision analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA emerging good practices task force. Value Health 19:1–13.  https://doi.org/10.1016/j.jval.2015.12.003 CrossRefGoogle Scholar
  35. Thunis P, Degraeuwe B, Pisoni E, Ferrari F, Clappier A (2016) On the design and assessment of regional air quality plans: the SHERPA approach. J Environ Manag 183:952–958.  https://doi.org/10.1016/j.jenvman.2016.09.049 CrossRefGoogle Scholar
  36. Vedrenne M, Borge R, Lumbreras J, Rodríguez ME (2014) Advancements in the design and validation of an air pollution integrated assessment model for Spain. Environ Model Softw 57:177–191.  https://doi.org/10.1016/j.envsoft.2014.03.002 CrossRefGoogle Scholar
  37. Vestreng V, Myhre G, Fagerli H, Reis S, Tarrasón L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681.  https://doi.org/10.5194/acp-7-3663-2007 CrossRefGoogle Scholar
  38. WHO (2013) Health risks of air pollution in Europe—HRAPIE project recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization Regional Office for Europe. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CESAM, Department of Environment and PlanningUniversity of AveiroAveiroPortugal

Personalised recommendations