Advertisement

Air Quality, Atmosphere & Health

, Volume 11, Issue 4, pp 471–482 | Cite as

Α dosimetry model of hygroscopic particle growth in the human respiratory tract

  • Eleftheria Chalvatzaki
  • Mihalis Lazaridis
Article
  • 119 Downloads

Abstract

The objective of the current study was to determine the growth and deposition of hygroscopic aerosol particles in the human respiratory tract. A hygroscopic particle growth methodology was incorporated into an existing particle dosimetry model (Exposure Dose Model 2, ExDoM2) using the κ-Köhler theory, the International Commission on Radiological Protection (ICRP) formulation for hygroscopic growth and mathematical formulations for taking into account the residence time, the influence of hygroscopicity on the particle’s density, and hygroscopic growth at 99.5% relative humidity. In order to validate ExDoM2, the results of the model were compared with experimental total deposition data for NaCl particles. The incorporation of the hygroscopic growth resulted in predictions closer to the experimental data than to model results without the use of a hygroscopic model formulation. The hygroscopicity plays a more significant role in the lower regions (tracheobronchial (TB) and alveolar-interstitial (AI) regions) of the respiratory tract. In particular, the hygroscopicity of NaCl particles decreases the deposition in the AI region for particles in the size range 0.03 μm ≤ aerodynamic diameter (dae) ≤ 0.2 μm while for the size range 0.3 μm ≤ dae ≤ 3 μm, the hygroscopicity increases the deposition in the AI region. In addition, it is observed that the deposition of (NH4)2SO4 and NH4NO3 particles with dae ≥ 0.30 μm is higher when the hygroscopic properties of the particles are taken into consideration. However, the particle deposition in the range 0.02 μm ≤ dae ≤ 0.25 μm is decreased due to hygroscopicity.

Keywords

Particulate matter Hygroscopic growth Aerosol Human respiratory tract Dosimetry model 

Notes

Acknowledgements

This work was supported by the European Union’s LIFE Programme in the framework of the Index-Air LIFE15 ENV/PT/000674 project.

References

  1. Aleksandropoulou V, Lazaridis M (2013) Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Qual Atmos Health 6:13–26CrossRefGoogle Scholar
  2. Anselm A, Heibel T, Gebhart J, Ferron G (1990) “In vivo”-studies of growth factors of sodium chloride particles in the human respiratory tract. J Aerosol Sci 21:427–430CrossRefGoogle Scholar
  3. Asgharian BA (2004) A model of deposition of hygroscopic particles in the human lung. Aerosol Sci Technol 38:938–947CrossRefGoogle Scholar
  4. Blanchard JD, Willeke K (1984) Total deposition of ultrafine sodium chloride particles in human lungs. J Appl Physiol 57:1850–1856CrossRefGoogle Scholar
  5. Buonanno G, Giovinco G, Morawska L, Stabile L (2015) Lung cancer risk of airborne particles for Italian population. Environ Res 142:443–451CrossRefGoogle Scholar
  6. Carrico CM, Petters MD, Kreidenweis SM, Collett JL, Engling G, Malm WC (2008) Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. J Geophys Res Atmos 113.  https://doi.org/10.1029/2007JD009274
  7. Chalvatzaki E, Lazaridis M (2015) Development and application of a dosimetry model (ExDoM2) for calculating internal dose of specific particle bound metals in the human body. Inhal Toxicol 27(6):308–320CrossRefGoogle Scholar
  8. Ferron G (1977) The size of soluble aerosol particles as a function of the humidity of the air. Application to the human respiratory tract. J Aerosol Sci 8:251–267CrossRefGoogle Scholar
  9. Ferron GA, Haider B, Kreyling WG (1988a) Inhalation of salt aerosol particles I. Estimation of the temperature and relative humidity in the upper human airways. J Aerosol Sci 19:343–363CrossRefGoogle Scholar
  10. Ferron GA, Kreyling WG, Haider B (1988b) Inhalation of salt aerosol particles II. Growth and deposition in the human respiratory tract. J Aerosol Sci 19:611–631CrossRefGoogle Scholar
  11. Ferron GA, Karg E, Peter JE (1993) Estimation of deposition of polydisperse hygroscopic aerosols in the human respiratory tract. J Aerosol Sci 24(5):655–670CrossRefGoogle Scholar
  12. Ferron GA, Karg E, Busch B, Heyder J (2005) Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties. Atmos Environ 39:343–352CrossRefGoogle Scholar
  13. Gebhart J, Heigwer G, Heyder J, Roth C, Stahlhofen W (1998) The use of light scattering photometry in aerosol medicine. J Aerosol Med 1:89–112CrossRefGoogle Scholar
  14. Good N, Topping DO, Allan JD, Flynn M, Fuentes E, Irwin M, Williams PI, Coe H, McFiggans G (2010) Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. Atmos Chem Phys 10:3189–3203CrossRefGoogle Scholar
  15. Haddrell AE, Davies JF, Miles REH, Reid JP, Dailey LA, Murnane D (2014) Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations. Int J Pharm 463(1):50–61CrossRefGoogle Scholar
  16. Haddrell AE, Davies JF, Reid JP (2015) Dynamics of particle size on inhalation of environmental aerosol and impact on deposition fraction. Environ Sci Technol 49:14512–14521CrossRefGoogle Scholar
  17. Hansen JE, Ampaya EP (1975) Human air space shapes, sizes, areas, and volumes. J Appl Physiol 38(6):990–995CrossRefGoogle Scholar
  18. Hinds WC (1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. John Wiley & Sons Inc, Hoboken Google Scholar
  19. Hofmann W, Koblinger L (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part II: deposition fractions and their sensitivity to parameter variations. J Aerosol Sci 21:674–688CrossRefGoogle Scholar
  20. Hussain M, Madl P, Khan A (2011) Lung deposition predictions of airborne particles and the emergence of contemporary diseases part-I. Health 2(2):51–59Google Scholar
  21. ICRP (1994) Human respiratory tract model for radiological protection. ICRP publication 66. Ann. ICRP 24 (1-3). Pergamon Press, OxfordGoogle Scholar
  22. ICRP (2015) Occupational intakes of radionuclides: part 1. ICRP Publication 130. Ann. ICRP 44 (2)Google Scholar
  23. James AC (1988) Lung dosimetry. In: Nazaroff WW, Nero AV (eds) Radon and its decay products in indoor air. John Wiley and Sons, Inc., New York, pp 259–309Google Scholar
  24. Koblinger L, Hofmann W (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci 21:661–674CrossRefGoogle Scholar
  25. Köhler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161CrossRefGoogle Scholar
  26. Kreidenweis SM, Koehler K, DeMott PJ, Prenni AJ, Carrico C, Ervens B (2005) Water activity and activation diameters from Hygroscopicity data - part I: theory and application to inorganic salts. Atmos Chem Phys 5:1357–1370CrossRefGoogle Scholar
  27. Kristensson A, Rissler J, Löndahl J, Johansson C, Swietlicki E (2013) Size-resolved respiratory tract deposition of sub-micrometer aerosol particles n a residential area with wintertime wood combustion. Aerosol Air Qual Res 13:24–35CrossRefGoogle Scholar
  28. Liu HJ, Zhao CS, Nekat B, Ma N, Wiedensohler A, van Pinxteren D, Spindler G, Müller K, Herrmann H (2014) Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China plain. Atmos Chem Phys 14:2525–2539CrossRefGoogle Scholar
  29. Liu YC, Wu ZJ, Tan TY, Wang YJ, Qin YH, Zheng J, Li MR, Hu M (2016) Estimation of the PM2.5 effective hygroscopic parameter and water content based on particle chemical composition: methodology and case study. Sci China Earth Sci 59:1683–1691CrossRefGoogle Scholar
  30. Löndahl J, Massling A, Swietlicki E, Bräuner EV, Ketzel M, Pagels J, Loft S (2009) Experimentally determined human respiratory tract deposition of airborne particles at a busy street. Environ. Sci Technol 43:4659–4664CrossRefGoogle Scholar
  31. Markelj J, Madronich S, Pompe M (2016) Modeling of hygroscopicity parameter kappa of organic aerosols using quantitative structure-property relationships. J Atmos Chem 74:357–376.  https://doi.org/10.1007/s10874-016-9347-3 CrossRefGoogle Scholar
  32. Martonen TB, Bell KA, Phalen RF, Wilson AF, Ho A (1982) Growth rate measurements and deposition modeling of hygroscopic aerosols in human tracheobronchial models. Ann Occup Hyg 26:93–108Google Scholar
  33. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971CrossRefGoogle Scholar
  34. Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD (1985) Postnatal enlargement of human tracheo-bronchial airways and implications for particle deposition. Anat Rec 212(4):368–380CrossRefGoogle Scholar
  35. Rissler J (2005) Hygroscopic properties of aerosols from open-air burning and controlled combustion of biomass, Ph.D. thesis, Div of Nucl Phys Dep of Phys, Lund Univ, Lund, SwedenGoogle Scholar
  36. Rissler J, Svenningsson B, Fors EO, Bilde M, Swietlicki E (2010) An evaluation and comparison of cloud condensation nucleus activity models: predicting particle critical saturation from growth at subsaturation. J Geophys Res Atmos 115.  https://doi.org/10.1029/2010JD014391
  37. Sánchez-Soberón F, Mari M, Kumar V, Rovira J, Nadal M, Schuhmacher M (2015) An approach to assess the particulate matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract. Environ Res 143:10–18CrossRefGoogle Scholar
  38. Schum GM, Yeh HC (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480CrossRefGoogle Scholar
  39. Snider G, Weagle CL, Murdymootoo KK, Ring A, Ritchie Y, Stone E, Walsh A, Akoshile C, Anh NX, Balasubramanian R, Brook J, Qonitan FD, Dong J, Griffith D, He K, Holben BN, Kahn R, Lagrosas N, Lestari P, Ma Z, Misra A, Norford LK, Quel EJ, Salam A, Schichtel B, Segev L, Tripathi S, Wang C, Yu C, Zhang Q, Zhang Y, Brauer M, Cohen A, Gibson MD, Liu Y, Martins JV, Rudich Y, Martin RV (2016) Variation in global chemical composition of PM2:5: emerging results from SPARTAN. Atmos Chem Phys 16:9629–9653CrossRefGoogle Scholar
  40. Tu KW, Knutson EO (1984) Total deposition of ultrafine hydrophobic and hygroscopic aerosols in the human respiratory system. Aerosol Sci Technol 3:453–466CrossRefGoogle Scholar
  41. Varghese SK, Gangamma S (2006) Particle deposition in human respiratory tract: effect of water-soluble fraction. Aerosol Air Qual Res 6(4):360–379CrossRefGoogle Scholar
  42. Vu TV, Delgado-Saborit JM, Harrison RM (2015) A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual Atmos Health 8:429–440CrossRefGoogle Scholar
  43. Vu TV, Ondracek J, Zdímal V, Schwarz J, Delgado-Saborit JM, Harrison RM (2017) Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual Atmos Health 10:1–14.  https://doi.org/10.1007/s11869-016-0424-1 CrossRefGoogle Scholar
  44. Weibel ER (1963) Morphometry of the human lung. Academic Press, New YorkCrossRefGoogle Scholar
  45. Winkler-Heil R, Ferron G, Hofmann W (2014) Calculation of hygroscopic particle deposition in the human lung. Inhal Toxicol 26(3):193–206CrossRefGoogle Scholar
  46. Wu ZJ, Poulain L, Henning S, Dieckmann K, Birmili W, Merkel M, van Pinxteren D, Spindler G, Müller K, Strat-mann F, Herrmann H, Wiedensohler A (2013) Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos Chem Phys 13:7983–7996CrossRefGoogle Scholar
  47. Yan Y, Fu P, Jing B, Peng C, Boreddy SKR, Yang F, Wei L, Sun Y, Wang Z, Ge M (2017) Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Sci Total Environ 578:307–316CrossRefGoogle Scholar
  48. Yeh HC, Schum GM (1980) Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480CrossRefGoogle Scholar
  49. Youn JS, Csavina J, Rine KP, Shingler T, Taylor MP, Sáez AE, Betterton EA, Sorooshian A (2016) Hygroscopic properties and respiratory system deposition behavior of particulate matter emitted by mining and smelting operations. Environ Sci Technol 50:11706–11713CrossRefGoogle Scholar
  50. Yu CP, Diu CK (1982) A comparative study of aerosol deposition in different lung models. Am Ind Hyg Assoc J 43:54–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations