Advertisement

Air Quality, Atmosphere & Health

, Volume 12, Issue 3, pp 305–310 | Cite as

Decontamination of Diesel particles from air by using the Counterfog® system

  • J. L. Pérez-Díaz
  • F. J. Llerena-AguilarEmail author
  • T. Martín-Pérez
  • J. Sánchez-García-Casarrubios
  • E. Ruiz-Navas
Article
  • 33 Downloads

Abstract

The existence of particles with diameter under 10 μm in air is strongly correlated with respiratory diseases. These particles are profusely produced by heating systems, traffic, and Diesel engines creating a serious problem to modern cities. Natural mechanisms removing particles from the atmosphere are too slow to deal with the huge amount of particles daily released by human activity. The objective of this work is to measure the effectiveness of a new technology called Counterfog® to eliminate airborne particles. The results show that Counterfog® is able to wash out PM10, PM5, and PM2.5 Diesel-generated airborne particles quite efficiently.

Keywords

Diesel exhaust particles PM2.5 PM10 Counterfog 

Notes

Funding information

This work has been funded by the FP7-SEC-2012-1 program of the EU Commission under grant number 312804.

References

  1. Allaby M (2003) Fog, smog and poisoned rain. Facts on File, Inc., New YorkGoogle Scholar
  2. Bagley ST, Gratz LD, Johnson JH, McDonald JF (1998) Effects of an oxidation catalytic converter and a biodiesel fuel on the chemical, mutagenic, and particle size characteristics of emissions from a diesel engine. Environ Sci Technol 32:1183–1191CrossRefGoogle Scholar
  3. Casarrubios JSG, Llerena-Aguilar FJ, Pérez-Díaz JL (2018) Fog dynamics. In: Malizia A, D’Arienzo M (eds) Enhancing CBRNE safety & security: proceedings of the SICC 2017 conference. Springer, ChamGoogle Scholar
  4. Dockery DW, Pope CA, Xu XP, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air-pollution and mortality in 6 United- States cities. New Engl J Med 329:1753–1759CrossRefGoogle Scholar
  5. European Environment Agency (EEA) 2012 Climate change, impacts and vulnerability in Europe ISSN 1725-9177 Report No 12/2012Google Scholar
  6. European Environment Agency (EEA) 2017 Air quality in Europe ISSN 1725-9177 Report No 13/2017Google Scholar
  7. Fenger J, Tjell JC (2009) Air pollution-from local to a global perspective. RCS Publishing Polyteknisk, ForlagGoogle Scholar
  8. Giechaskiel B, Alföldy B, Drossinos Y (2009) A metric for health effects studies of diesel exhaust particles. J Aerosol Sci 40:639–651CrossRefGoogle Scholar
  9. Greenfield SME (1956) Rain scavenging of radioactive particulate matter from the atmosphere. J Meteor 14:115–125CrossRefGoogle Scholar
  10. Grigoratos T, Martini G (2014) Brake wear particle emissions: a review. Environ Sci Pollut Res 22(4):2491–2504Google Scholar
  11. Harris SJ, Maricq MM (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32:749–764CrossRefGoogle Scholar
  12. Lucking AJ, Lundbäck M, Barath SL, Mills NL, Sidhu MK, Langrish JP, Boon NA, Pourazar J, Badimon JJ, Gerlofs-Nijland ME, Cassee FR, Boman C, Donaldson K, Sandstrom T, Newby DE, Blomberg A (2011) Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123:1721–1728.  https://doi.org/10.1161/CIRCULATIONAHA.110.987263 CrossRefGoogle Scholar
  13. Martín-Pérez T, Llerena-Aguilar FJ, Pérez-Serrano J, Copa-Patiño JL, de Carranza JS, Orellana-Muriana JM, Pérez-Díaz JL (2018) Eco-friendly air decontamination of biological warfare agents using “counterfog” system. In: Malizia A, D'Arienzo M (eds) Enhancing CBRNE safety & security: proceedings of the SICC 2017 conference. Springer, ChamGoogle Scholar
  14. Nel A (2005) Air pollution-related illness: effects of particles. Science 308:804–806CrossRefGoogle Scholar
  15. Pérez-Díaz JL, Qin Y, Ivanov O, Quiñones J, Stengl V, Nylander K, Hornig W, Álvarez J, Ruiz-Navas EM, Manzanec K (2018) Fast response CBRN high-scale decontamination system: COUNTERFOG. In: Malizia A, D’Arienzo M (eds) Enhancing CBRNE safety & security: proceedings of the SICC 2017 conference. Springer, ChamGoogle Scholar
  16. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Particulate air-pollution as a predictor of mortality in a prospectivestudy of US adults. Am J Respir Crit Care Med 151:669–674CrossRefGoogle Scholar
  17. Vogt R, Kirchner U, Scheer V, Hinz KP, Trimborn A, Spengler B (2003) Identification of diesel exhaust particles at an autobahn, urban and rural location using single-particle mass spectrometry. J Aerosol Sci 34:319–337CrossRefGoogle Scholar
  18. Wichmann HE (2007) Disel Exhaust Particles. Inhal Toxicol 19:241–244CrossRefGoogle Scholar
  19. World Health Organization (WHO) 2013 Health effects of particulate matter. Convention on Long-Range Transboundary Air Pollution ISBN 978 92 890 0001 7Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. L. Pérez-Díaz
    • 1
  • F. J. Llerena-Aguilar
    • 1
    Email author
  • T. Martín-Pérez
    • 1
  • J. Sánchez-García-Casarrubios
    • 2
  • E. Ruiz-Navas
    • 3
  1. 1.Departamento de Teoría de la Señal y Comunicaciones, Escuela Politécnica SuperiorUniversidad de AlcaláAlcalá de HenaresSpain
  2. 2.San Jorge Tecnológicas S.L.ValdemoroSpain
  3. 3.Instituto Pedro Juan de LastanosaUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations