Advertisement

Air Quality, Atmosphere & Health

, Volume 10, Issue 3, pp 261–285 | Cite as

Spatio-temporal monitoring by ground-based and air- and space-borne lidars of a moderate Saharan dust event affecting southern Europe in June 2013 in the framework of the ADRIMED/ChArMEx campaign

  • R. Barragan
  • M. Sicard
  • J. Totems
  • J. F. Léon
  • F. Dulac
  • M. Mallet
  • J. Pelon
  • L. Alados-Arboledas
  • A. Amodeo
  • P. Augustin
  • A. Boselli
  • J. A. Bravo-Aranda
  • P. Burlizzi
  • P. Chazette
  • A. Comerón
  • G. D’Amico
  • P. Dubuisson
  • M. J. Granados-Muñoz
  • G. Leto
  • J. L. Guerrero-Rascado
  • F. Madonna
  • L. Mona
  • C. Muñoz-Porcar
  • G. Pappalardo
  • M. R. Perrone
  • V. Pont
  • F. Rocadenbosch
  • A. Rodriguez-Gomez
  • S. Scollo
  • N. Spinelli
  • G. Titos
  • X. Wang
  • R. Zanmar Sanchez
Article

Abstract

During the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the Mediterranean region) special observation period (SOP-1a), conducted in June 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) project, a moderate Saharan dust event swept the Western and Central Mediterranean Basin (WCMB) from west to east during a 9-day period between 16 and 24 June. This event was monitored from the ground by six EARLINET/ACTRIS (European Aerosol Research Lidar Network/Aerosols, Clouds, and Trace gases Research Infrastructure Network) lidar stations (Granada, Barcelona, Naples, Potenza, Lecce and Serra la Nave) and two ADRIMED/ChArMEx lidar stations specially deployed for the field campaign in Cap d’en Font and Ersa, in Minorca and Corsica Islands, respectively. The first part of the study shows the spatio-temporal monitoring of the dust event during its transport over the WCMB with ground-based lidar and co-located AERONET (Aerosol Robotic Network) Sun-photometer measurements. Dust layer optical depths, Ångström exponents, coarse mode fractions, linear particle depolarization ratios (LPDRs), dust layer heights and the dust radiative forcing estimated in the shortwave (SW) and longwave (LW) spectral ranges at the bottom of the atmosphere (BOA) and at the top of the atmosphere (TOA) with the Global Atmospheric Model (GAME), have been used to characterize the dust event. Peak values of the AERONET aerosol optical depth (AOD) at 440 nm ranged between 0.16 in Potenza and 0.37 in Cap d’en Font. The associated Ångström exponent and coarse mode fraction mean values ranged from 0.43 to 1.26 and from 0.25 to 0.51, respectively. The mineral dust produced a negative SW direct radiative forcing at the BOA ranging from −56.9 to −3.5 W m−2. The LW radiative forcing at the BOA was positive, ranging between +0.3 and +17.7 W m-2. The BOA radiative forcing estimates agree with the ones reported in the literature. At the TOA, the SW forcing varied between −34.5 and +7.5 W m−2. In seven cases, the forcing at the TOA resulted positive because of the aerosol strong absorbing properties (0.83 < single-scattering albedo (SSA) < 0.96). The multi-intrusion aspect of the event is examined by means of air- and space-borne lidar measurements, satellite images and back trajectories. The analysis reported in this paper underline the arrival of a second different intrusion of mineral dust observed over southern Italy at the end of the considered period which probably results in the observed heterogeneity in the dust properties.

Keywords

ADRIMED ChArMEx AERONET Lidar CALIOP Multi-intrusion Saharan dust event Optical depth Radiative forcing GAME Back trajectories ACTRIS EARLINET Mediterranean troposphere 

Notes

Acknowledgements

This study is performed in the framework of work package 4 on aerosol-radiation-climate interactions of the coordinated programme ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr). It is also supported by the ACTRIS (Aerosols, Clouds, and Trace Gases Research Infrastructure Network) Research Infrastructure Project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654169 and previously under grant agreement no. 262254 in the 7th Framework Programme (FP7/2007-2013); by the Spanish Ministry of Economy and Competitiveness (project TEC2012-34575 and TEC2015-63832-P) and of Science and Innovation (project UNPC10-4E-442) and EFRD (European Fund for Regional Development); by the Department of Economy and Knowledge of the Catalan autonomous government (grant 2014 SGR 583); and by the Andalusia Regional Government through projects P12-RNM-2409 and P10-RNM-6299. This work was funded by the VAMOS SEGURO project, Programma di Cooperazione Transfrontaliera Italia-Malta 2007–2013, A1.2.3-62, Obiettivo Specifico 2.3. ChArMEx-France is supported through the MISTRALS programme by INSU, ADEME, Météo-France and CEA. ADRIMED project was mainly supported by the French Agence Nationale de la Recherche. AERONET/PHOTONS is acknowledged for calibration of the Ersa Sun-photometer. Acknowledgement to AERONET for sun-photometer quality-assured data processing and distribution.

References

  1. Barkan J, Kutiel H, Alpert P, Kishcha P (2004) Synoptics of dust intrusion days from the African continent into the Atlantic Ocean. J Geophys Res 109:D08201. doi: 10.1029/2003JD004416 CrossRefGoogle Scholar
  2. Barragan R, Sicard M, Totems J, Léon JF, Renard JB, Dulac F, Mallet M, Pelon J, Alados-Arboledas L, Amodeo A, Augustin P, Boselli A, Bravo-Aranda JA, Burlizzi P, Chazette P, Comerón A, D’Amico G, Granados-Muñoz MJ, Leto G, Guerrero-Rascado JL, Madonna F, Mona L, Muñoz-Porcar C, Pappalardo G, Perrone MR, Pont V, Rocadenbosch F, Rodriguez A, Scollo S, Spinelli N, Titos G, Wang X, Zanmar Sanchez R (2015) Characterization of Saharan dust ageing over the western Mediterranean Basin during a multi-intrusion event in June 2013 in the framework of the ADRIMED/ChArMEx campaign, EGU General Assembly, Vienna, Austria, 12-17 April 2015. Geophys Res Abstr 17:EGU2015–EGU2789Google Scholar
  3. Barragan R, Romano S, Sicard M, Burlizzi, P, Perrone MR, Comeron A (2016) Estimation of mineral dust direct radiative forcing at the EARLINET site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: impact of radiative transfer model spectral resolutions. J Geophys Res 121. doi: 10.1002/2016JD025016.Google Scholar
  4. Basart S, Pérez C, Nickovic S, Cuevas E, Baldasano JM (2012) Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B 64:1–23CrossRefGoogle Scholar
  5. Bergamo A, Tafuro M, Kinne S, De Tomasi F, Perrone MR (2008) Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean from AERONET derived aerosol properties. Atmos Chem Phys 8:6995–7014CrossRefGoogle Scholar
  6. Berk A, Anderson GP, Acharya PK, Bernstein LS, Muratov L, Lee J, Fox M, Adler-Golden SM, Chetwynd JH, Hoke ML, Lockwood RB, Gardner JA, Cooley TW, Borel CC, Lewis PE, Shettle EP (2006) MODTRAN5: 2006 update. Proc SPIE 6233:62331FCrossRefGoogle Scholar
  7. Boselli A, Armenante M, D'Avino L, Pisani G, Spinelli N, Wang X (2004) Characterization of atmospheric aerosol in the urban area of Napoli in the framework of EARLINET Project. Proc. SPIE 5235, Remote Sensing of Clouds and the Atmosphere VIII, 643 (February 16, 2004); doi: 10.1117/12.514247
  8. Bösenberg J, Ansmann A, Baldasano JM, Balis D, Böckmann C, Calpini B, Chaikovsky A, Flamant P, Hagard A, Mitev V, Papayannis A, Pelon J, Resendes D, Schneider J, Spinelli N, Trickl T, Vaughan G, Visconti G, Wiegner M (2001) EARLINET: a European aerosol research lidar network, laser remote sensing of the atmosphere. In: Dabas A, Loth C, Pelon J (eds) Selected papers of the 20th International Laser Radar Conference. Ecole Polytechnique, Palaiseau, France, pp. 155–158Google Scholar
  9. Burton SP, Hair JW, Kahnert M, Ferrare RA, Hostetler CA, Cook AL, Harper DB, Berkoff TA, Seaman ST, Collins JE, Fenn MA, Rogers RR (2015) Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos Chem Phys 15:13453–13473. doi: 10.5194/acp-15-13453-2015 CrossRefGoogle Scholar
  10. Cachorro VE, Toledano C, Prats N, Sorribas M, Mogo S, Berjón A, Torres B, Rodrigo R, de la Rosa J, de Frutos AM (2008) The strongest desert dust intrusion mixed with smoke over the Iberian Peninsula registered with Sun photometry. J Geophys Res 113:D14S04CrossRefGoogle Scholar
  11. Chazette P, Totems J, Ancellet G, Pelon J, Sicard M (2016) Temporal consistency of lidar observations during aerosol transport event in the framework of the ChArMEx/ADRIMED campaign at Minorca in June 2013. Atmos Chem Phys 16:2862–2875. doi: 10.5194/acp-16-2863-2016 CrossRefGoogle Scholar
  12. Dubovik O, Holben B, Eck T, Smirnov A, Kaufman Y, King M, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  13. Dubuisson P, Dessailly D, Vesperini M, Frouin R (2004) Water vapor retrieval over ocean using near-infrared radiometry. J Geophys Res 109:D19106. doi: 10.1029/2004JD004516 CrossRefGoogle Scholar
  14. Dubuisson P, Roger J, Mallet M, Dubovik O (2006) A Code to Compute the Direct Solar Radiative Forcing: Application to Anthropogenic Aerosols during the Escompte Experiment. In: Fischer H, Sohn BJ, Deepak A (eds) Proc. International Radiation Symposium (IRS 2004) on Current Problems in Atmospheric Radiation. Hampton, pp 127–130, 23–28 August 2004, Busan, KoreaGoogle Scholar
  15. Dulac F (2014) An overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), European Geosciences Union General Assembly. Geophys Res Abstr 16:EGU2014–EG11441 Vienna (Austria)Google Scholar
  16. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dor land R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007, the physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, pp. 129–234Google Scholar
  17. Guerrero-Rascado JL, Ruiz B, Alados-Arboledas L (2008) Multispectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmos Environ 42:2668–2681CrossRefGoogle Scholar
  18. Guleria RP, Kuniyal JC (2016) Characteristics of atmospheric aerosol particles and their role in aerosol radiative forcing over the northwestern Indian Himalaya in particular and over India in general. Air Qual Atmos Health 9:795. doi: 10.1007/s11869-015-0381-0 Google Scholar
  19. Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Met Soc 79:831–844CrossRefGoogle Scholar
  20. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) Aeronet—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–19CrossRefGoogle Scholar
  21. IPCC: Climate Change (2013) The physical science basis, contribution of working group I to the UN IPCC’s fifth assessment report (2013). Cambridge University Press, New York (USA)Google Scholar
  22. Klett JD (1985) Stable analytical inversion solution for processing lidar returns. Appl Opt 20:211–220CrossRefGoogle Scholar
  23. Koepke P, Gasteiger J, Hess M (2015) Technical note: optical properties of desert aerosol with non-spherical mineral particles: data incorporated to OPAC. Atmos Chem Phys 15:5947–5956. doi: 10.5194/acp-15-5947-2015 CrossRefGoogle Scholar
  24. Krekov GM (1993) Models of atmospheric aerosols. In: Jennings SG (ed) Aerosol effects on climate. University of Arizona Press, Tucson, AZ, pp. 9–72Google Scholar
  25. Lee YC, Wenig M, Zhang Z (2012) Dust episodes in Hong Kong (South China) and their relationship with the Sharav and Mongolian cyclones and jet stream. Air Qual Atmos Health 5:413–424. doi: 10.1007/s11869-011-0134-7 CrossRefGoogle Scholar
  26. Lelieveld J, Berresheim H, Borrmann S, Crutzen PJ, Dentener FJ, Fischer H, Feichter J, Flatau PJ, Heland J, Holzinger R, Korrmann R, Lawrence MG, Levin Z, Markowicz KM, Mihalopoulos N, Minikin A, Ramanathan V, de Reus M, Roelofs GJ, Scheeren HA, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J, Ziereis H (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799CrossRefGoogle Scholar
  27. Leon JF, Augustin P, Mallet M, Bourrianne T, Pont V, Dulac F, Fourmentin M, Lambert D, Sauvage B (2015) Aerosol vertical distribution, optical properties and transport over Corsica (western Mediterranean). Atmos. Chem. Phys. Discuss. 15:9507–9540. doi: 10.5194/acpd-15-9507-2015 CrossRefGoogle Scholar
  28. Leto G, Zanmar Sanchez R, Bellassai G, Bruno P, Maccarone MC, Martinetti E (2015) All Sky Camera, LIDAR and Electric Field Meter: Auxiliary instruments for the ASTRI SST-2M prototype. AtmoHEAD 2014, Padova, Italy, Edited by M. Doro; EPJ Web of Conferences, Volume 89, id.02006, doi: 10.1051/epjconf/20158902006
  29. Liao H, Seinfeld J (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res 103:31637–31645CrossRefGoogle Scholar
  30. Madonna F, Amodeo A, Boselli A, Cornacchia C, Cuomo V, D’Amico G, Giunta A, Mona L, Pappalardo G (2011) CIAO: the CNR-IMAA advanced observatory for atmospheric research. Atmos Meas Tech 4:1191–1208. doi: 10.5194/amt-4-1191-2011 CrossRefGoogle Scholar
  31. Mallet M, Dulac F, Formenti P, Nabat P, Sciare J, Roberts G, Pelon J, Ancellet G, Tanré D, Parol F, Denjean C, Brogniez G, di Sarra A, Alados-Arboledas L, Arndt J, Auriol F, Blarel L, Bourrianne T, Chazette P, Chevaillier S, Claeys M, D’ Anna B, Derimian Y, Desboeufs K, Di Iorio T, Doussin JF, Durand P, Féron A, Freney E, Gaimoz C, Goloub P, Gómez-Amo JL, Granados-Muñoz MJ, Grand N, Hamonou E, Jankowiak I, Jeannot M, Léon JF, Maillé M, Mailler S, Meloni D, Menut L, Momboisse G, Nicolas J, Podvin T, Pont V, Rea G, Renard JB, Roblou L, Schepanski K, Schwarzenboeck A, Sellegri K, Sicard M, Solmon F, Somot S, Torres B, Totems J, Triquet S, Verdier N, Verwaerde C, Waquet F, Wenger J, Zapf P (2016) Overview of the chemistry-aerosol Mediterranean experiment/aerosol direct radiative forcing on the Mediterranean climate (ChArMEx/ADRIMED) summer 2013 campaign. Atmos Chem Phys 16:455–504. doi: 10.5194/acp-16-455-2016 CrossRefGoogle Scholar
  32. Mamouri RE, Nisantzi A, Ansmann A, Hadjimitsis DG (2016) Extreme dust storm over the eastern Mediterranean in September 2015: Lidar vertical profiling of desert dust at Limassol, Cyprus. Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-2016-354 Google Scholar
  33. Marbà N, Jordà G, Agustí S, Girard C, Duarte CM (2015) Footprints of climate change on Mediterranean Sea biota. Front Mar Sci 2:56. doi: 10.3389/fmars.2015.00056 CrossRefGoogle Scholar
  34. Martin-Vide J, Lopez-Bustins JA (2006) The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475. doi: 10.1002/joc.1388 CrossRefGoogle Scholar
  35. Meloni D, Di Sarra A, DeLuisi J, Di Iorio T, Fiocco G, Junkermann W, Pace G (2003) Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements. J Geophys Res 108:4317. doi: 10.1029/2002JD002807 CrossRefGoogle Scholar
  36. Meloni D, Di Sarra A, Di Iorio T, Fiocco G (2004) Direct radiative forcing of Saharan dust in the Mediterranean from measurements at Lampedusa Island and MISR space-borne observations. J Geophys Res 109:D08206. doi: 10.1029/2003JD003960 CrossRefGoogle Scholar
  37. Meloni D, Di Sarra A, Monteleone F, Pace G, Piacention S, Sferlazzo DM (2008) Seasonal transport patterns of intense dust events at the Mediterranean island of Lampedusa. Atmos Res 88:134–148. doi: 10.1016/j.atmosres.2007.10.007 CrossRefGoogle Scholar
  38. Mona L, Liu Z, Müller D, Omar A, Papayannis A, Pappalardo G, Sugimoto N, Vaughan M (2012) Lidar measurements for desert dust characterization: an overview. Adv Meteorol 2012:356265CrossRefGoogle Scholar
  39. Moulin C, Lambert CE, Dayan U, Masson V, Ramonet M, Bousquet P, Legrand M, Balkanski YJ, Guelle W, Marticorena B, Bergametti G, Dulac F. (1998) Satellite climatology of African dust transport in the Mediterranean atmosphere. J Geophys. Res 103: 13137–13144Google Scholar
  40. Mona L, Papagiannopoulos N, Basart S, Baldasano JM, Binietoglou I, Cornacchia C, Pappalardo G (2014) EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy. Atmos Chem Phys 14:8781–8793. doi: 10.5194/acp-14-8781-2014 CrossRefGoogle Scholar
  41. Müller D, Heinold B, Tesche M, Tegen I, Althausen D, Arboledas-Arboledas L, Amiridis V, Amodeo A, Ansmann A, Balis D, Comeron A, D’Amico G, Gerasopoulos E, Guerrero-Rascado JL, Freudenthaler V, Giannakaki E, Heese B, Iarlori M, Knippertz P, Mamouri RE, Mona L, Papayannis A, Pappalardo G, Perrone RM, Pisani G, Rizi V, Sicard M, Spinelli N, Tafuro A, Wiegner M (2009) EARLINET observations of the 14-22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling. Tellus B 61B:325–339 . doi: 10.1111/j.1600-0889.2008.00400.x61BCrossRefGoogle Scholar
  42. Müller D, Weinzierl B, Petzold A, Kandler K, Ansmann A, Müller T, Tesche M, Freudenthaler V, Esselborn M, Heese B, Althausen D, Schladitz A, Otto S, Knippertz P (2010) Mineral dust observed with AERONET Sun photometer, Raman lidar and in situ instruments during SAMUM 2006: shape-independent particle properties. J Geophys Res 115:D07202. doi: 10.1029/2009JD012520 Google Scholar
  43. Nowottnick EP, Colarco PR, Welton EJ, da Silva A (2015) Use of the CALIOP vertical feature mask for evaluating global aerosol model. Atmos. Meas. Tech. 8:3647–3669. doi: 10.5194/amt-8-3647-2015 CrossRefGoogle Scholar
  44. Osada K, Ura S, Kagawa M, Mikami M, Tanaka TY, Matoba S, Aoki K, Shinoda M, Kurosaki Y, Hayashi M, Shimizu A, Uematsu M (2014) Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution. Atmos Chem Phys 14:1107–1121. doi: 10.5194/acp-14-1107-2014 CrossRefGoogle Scholar
  45. Papayannis A, Mamouri RE, Amiridis V, Kazadzis S, Pérez C, Tsaknakis G, Kokkalis P, Baldasano JM (2009) Systematic lidar observations of Saharan dust layers over Athens, Greece in the frame of EARLINET project (2004-2006). Ann Geophys 27:3611–3620CrossRefGoogle Scholar
  46. Pappalardo G, Amodeo A, Apituley A, Comeron A, Freudenthaler V, Linné H, Ansmann A, Bösenberg J, D’Amico G, Mattis I, Mona L, Wandinger U, Amiridis V, Alados-Arboledas L, Nicolae D, Wiegner M (2014) EARLINET: towards an advanced sustainable European aerosol lidar network. Atmos Meas Tech 7:2389–2409CrossRefGoogle Scholar
  47. Pelon J, Flamant C, Chazette P, Leon JF, Tanre D, Sicard M, Satheesh SK (2002) Characterization of aerosol spatial distribution and optical properties over the Indian Ocean from airborne LIDAR and radiometry during INDOEX’99. J Geophys Res-Atmos 107:8029. doi: 10.1029/2001JD000402 CrossRefGoogle Scholar
  48. Pérez C, Nickovic S, Baldasano JM, Sicard M, Rocadenbosch F, Cachorro VE (2006a) A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling. J Geophys Res 111:D15214. doi: 10.1029/2005JD006579 CrossRefGoogle Scholar
  49. Pérez C, Nickovic S, Pejanovic G, Baldasano JM, Özsoy E (2006b) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophys Res 111:D16206. doi: 10.1029/2005JD006717 CrossRefGoogle Scholar
  50. Perrone MR, De Tomasi F, Gobbi GP (2014b) Vertically resolved aerosol properties by multi-wavelength lidar measurements. Atmos Chem Phys 14:1185–1204. doi: 10.5194/acp-14-1185-2014 CrossRefGoogle Scholar
  51. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. doi: 10.1029/2000RG000095 CrossRefGoogle Scholar
  52. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. B Am Meteor Soc 79:2101–2114. doi: 10.1175/1520-0477(1998) CrossRefGoogle Scholar
  53. Romano S, Burlizzi P, Perrone MR (2016) Experimental determination of short- and long-wave dust radiative effects in the Central Mediterranean and comparison with model results. Atmos Res 171:5–20. doi: 10.1016/j.atmosres.2015.11.019 CrossRefGoogle Scholar
  54. Russell PB, Bergstrom RW, Shinozuka Y, Clarke AD, De-Carlo PF, Jimenez JL, Livingston JM, Redemann J, Dubovik O, Strawa A (2010) Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169. doi: 10.5194/acp-10-1155-2010 CrossRefGoogle Scholar
  55. Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of regional climate models. Geophys Res Lett 36(30):L21401. doi: 10.1029/2009GL040120 CrossRefGoogle Scholar
  56. Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. J. Wiley & Sons, INCGoogle Scholar
  57. Sicard M, Rocadenbosch F, Reba MNM, Comerón A, Tomás S, García-Vizacíno D, Batet O, Barrios R, Kumar D, Baldasano JM (2011) Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain. Atmos Chem Phys 11:175–190. doi: 10.5194/acp-11-175-2011 CrossRefGoogle Scholar
  58. Sicard M, Mallet M, García-Vizcaíno D, Comerón A, Rocadenbosch F, Dubuisson P, Muñoz-Porcar C (2012) Intense dust and extremelly fresh biomass burning in Barcelona, Spain: characterization of their optical properties and estimation of their radiative forcing. Environ Res Lett 7:034016. doi: 10.1088/1748-9326/7/3/034016 CrossRefGoogle Scholar
  59. Sicard M, Bertolín S, Mallet M, Dubuisson P, Comerón A (2014) Estimation of mineral dust long-wave radiative forcing: sensitivity study to particle properties and application to real cases in the region of Barcelona. Atmos Chem Phys 14:9213–9231. doi: 10.5194/acp-14-9213-2014 CrossRefGoogle Scholar
  60. Sicard M, Barragan R, Muñoz-Porcar C, Comerón A, Mallet M, Dulac F, Pelon J, Alados Arboledas L, Amodeo A, Boselli A, Bravo-Aranda JA, D'amico G, Granados-Muñoz MJ, Leto G, Guerrero-Rascado JL, Madonna F, Mona L, Pappalardo G, Perrone MR, Burlizzi P, Rocadenbosch F, Rodríguez-Gómez A, Scollo S, Spinelli N, Titos G, Wang X, Zanmar Sanchez R (2016a) Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean, International Journal of Remote Sensing, 37:19, 4698-4711. doi: 10.1080/01431161.2016.1222102.
  61. Sicard M, Barragan R, Dulac F, Alados-Arboledas L, Mallet M (2016b) Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean, Atmos. Chem. Phys., 16, 12177-12203. doi: 10.5194/acp-16-12177-2016
  62. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modelling system. Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00110.1 Google Scholar
  63. Stamnes K, Tsay SC, Nakajima T (1988) Computation of eigenvalues and eigenvectors for discrete ordinate and matrix operator method radiative transfer, J. Quant. Spectrosc. Radiat. Transfer 39:415–419Google Scholar
  64. Tafuro AM, Barnaba F, De Tomasi F, Perrone MR, Gobbi GP (2006) Saharan dust particle properties over the Central Mediterranean. Atmos Res 81:67–93. doi: 10.1016/j.atmosres.2005.11.008 CrossRefGoogle Scholar
  65. Thieuleux F, Moulin C, Bréon FM, Maignan F, Poitou J, Tanré D (2005) Remote sensing of aerosols over the oceans using MSG/SEVIRI imagery. Ann Geophys 23:3561–3568. doi: 10.5194/angeo-23-3561-2005 CrossRefGoogle Scholar
  66. Valenzuela A, Olmo FJ, Lyamani H, Antón M, Quirantes A, Alados-Arboledas L (2012) Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain. Atmos Chem Phys 12:10331–10351CrossRefGoogle Scholar
  67. Valenzuela A, Olmo FJ, Lyamani H, Antón M, Titos G, Cazorla A, Alados-Arboledas L (2015) Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmos Res 154:1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • R. Barragan
    • 1
    • 2
  • M. Sicard
    • 1
    • 2
  • J. Totems
    • 3
  • J. F. Léon
    • 4
  • F. Dulac
    • 3
  • M. Mallet
    • 5
  • J. Pelon
    • 6
  • L. Alados-Arboledas
    • 7
    • 8
  • A. Amodeo
    • 9
  • P. Augustin
    • 10
  • A. Boselli
    • 9
    • 11
  • J. A. Bravo-Aranda
    • 7
    • 8
  • P. Burlizzi
    • 12
  • P. Chazette
    • 3
  • A. Comerón
    • 1
  • G. D’Amico
    • 9
  • P. Dubuisson
    • 10
  • M. J. Granados-Muñoz
    • 7
    • 8
  • G. Leto
    • 13
  • J. L. Guerrero-Rascado
    • 7
    • 8
  • F. Madonna
    • 9
  • L. Mona
    • 9
  • C. Muñoz-Porcar
    • 1
  • G. Pappalardo
    • 9
  • M. R. Perrone
    • 12
  • V. Pont
    • 4
  • F. Rocadenbosch
    • 1
    • 2
  • A. Rodriguez-Gomez
    • 1
  • S. Scollo
    • 14
  • N. Spinelli
    • 15
  • G. Titos
    • 7
    • 8
  • X. Wang
    • 15
    • 16
  • R. Zanmar Sanchez
    • 13
  1. 1.Remote Sensing LaboratoryUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Ciències i Tecnologies de l’Espai - Centre de Recerca de l’Aeronàutica i de l’Espai/Institut d’Estudis Espacials de Catalunya (CTE-CRAE/IEEC)Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA-CNRS-UVSQIPSL and Univ. Paris- Saclay Gif-sur-YvetteParisFrance
  4. 4.Laboratoire d’AérologieUniversité de Toulouse/CNRSToulouseFrance
  5. 5.CNRM UMR 3589Météo-France/CNRSToulouseFrance
  6. 6.Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)Université Pierre et Marie CurieParisFrance
  7. 7.Dpt. Applied Physics, Faculty of SciencesUniversity of GranadaGranadaSpain
  8. 8.Andalusian Institute for Earth System Research (IISTA-CEAMA)GranadaSpain
  9. 9.Consiglio Nazionale delle RicercheIstituto di Metodologie per l’Analisi Ambientale (CNR-IMAA)PotenzaItaly
  10. 10.Laboratoire d’Optique AtmosphériqueLilleFrance
  11. 11.Consorzio Nazionale Interuniversitario per le Scienze Fisiche della MateriaNaplesItaly
  12. 12.Dipartimento di Matematica e FisicaUniversità del SalentoLecceItaly
  13. 13.INAF - Osservatorio Astrofisico di CataniaGravina di CataniaItaly
  14. 14.Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio EtneoSezione di CataniaItaly
  15. 15.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”NaplesItaly
  16. 16.Consiglio Nazionale delle Ricerche – Istituto Superconduttori, Materiali Innovativi e Dispositivi (SPIN-CNR)NaplesItaly

Personalised recommendations