Advertisement

Air Quality, Atmosphere & Health

, Volume 10, Issue 4, pp 457–468 | Cite as

Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants

  • G. M. Pereira
  • N. De Oliveira Alves
  • S. E. S. Caumo
  • S. Soares
  • K. Teinilä
  • D. Custódio
  • R. Hillamo
  • C. Alves
  • P. C. Vasconcellos
Article

Abstract

São Paulo is a Latin American megacity impacted by heavy traffic emissions and also affected by biomass burning and biogenic emissions. To better understand the sources of pollution during a highly polluted period, PM10 samples were collected in an intensive campaign in 2013. The concentrations of particulate matter, organic carbon (OC), elemental carbon (EC), biomass burning tracers (levoglucosan, mannosan, and galactosan), water-soluble ions, and polycyclic aromatic hydrocarbons (PAHs) were determined to identify the main sources affecting the air quality. The PAHs results were compared to an intensive campaign done in 2012. Backward air masses trajectories were used in other to investigate the influence of remote sources. The average benzo[a]pyrene equivalent index (BaPE) values represented a higher cancer risk in 2013 samples than in 2012; the diagnostic ratios indicated vehicular emissions for both campaigns but fresher particles emission for 2013 campaign. During the 2013 campaign, the samples presented good correlations between OC and EC with monosaccharides, suggesting an influence of biomass burning on the carbonaceous species. Levoglucosan to mannosan ratio indicated the influence of sugarcane burning; the backward air masses trajectories suggested transport of aerosol from the sugarcane production region in 60 % of the sampling days.

Keywords

Atmospheric pollution Atmospheric particulate matter Aerosol transport Organic pollutants Water-soluble ions Biomass burning 

Notes

Acknowledgments

This work was partially supported by grants from FAPESP, São Paulo Research Foundation. G.M. Pereira also thanks CNPq (Project 152601/2013-9), National Council for Scientific and Technological Development, for the postgraduate scholarship and Santander Bank, for international scholarship. The authors also thank the INCT—Energy and Environment.

References

  1. Alves CA, Gomes J, Nunes T, Duarte M, Calvo A, Custódio D, Pio C, Karanasiou A, Querol X (2015) Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos Res 153:134–144. doi: 10.1016/j.atmosres.2014.08.002 CrossRefGoogle Scholar
  2. Andrade SJ, Cristale J, Silva FS, Zocolo GJ, Marchi MRR (2010) Contribution of sugar-cane harvesting season to atmospheric contamination by polycyclic aromatic hydrocarbons (PAHs) in Araraquara city, Southeast Brazil. Atmos Environ 44:2913–2919. doi: 10.1016/j.atmosenv.2010.04.026 CrossRefGoogle Scholar
  3. Andrade MF, Fornaro A, Dias EF, Mazzolia CR, Martins LD, Boian C, Oliveira MGL, Peres J, Carbone S, Alvalá P, Leme NP (2012a) Ozone sounding in the Metropolitan Area of São Paulo, Brazil: wet and dry season campaigns of 2006. Atmos Environ 61:627–640. doi: 10.1016/j.atmosenv.2012.07.083 CrossRefGoogle Scholar
  4. Andrade MF, Miranda RM, Fornaro A, Kerr A, Oyama B, Andre PA, Saldiva P (2012b) Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:79–88. doi: 10.1007/s11869-010-0104-5 CrossRefGoogle Scholar
  5. Behera N, Sharma M (2010) Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci Total Environ 408:3569–3575. doi: 10.1016/j.scitotenv.2010.04.017 CrossRefGoogle Scholar
  6. Bougiatioti A, Zarmpas P, Koulouri E, Antoniou M, Theodosi C, Kouvarakis G, Saarikoski S, Mäkelä T, Hillamo R, Mihalopoulos N (2013) Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean. Atmos Environ 64:251–262. doi: 10.1016/j.atmosenv.2012.09.071 CrossRefGoogle Scholar
  7. Brito J, Rizzo LV, Herckes P, Vasconcellos PC, Caumo SES, Fornaro A, Ynoue RY, Artaxo P, Andrade MF (2013) Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos Chem Phys 13:12199–12213. doi: 10.5194/acp-13-12199-2013 CrossRefGoogle Scholar
  8. Cabada JC, Pandis SN, Subramanian R, Robinson AL, Polidori A, Turpin B (2004) Estimating the secondary organic aerosol contribution to PM 2.5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci Tech 38:140–155. doi: 10.1080/02786820390229084 CrossRefGoogle Scholar
  9. Callén MS, Iturmendi A, López JM (2014) Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ Pollut 195C:167–177, doi: 10.1016/j.envpol.2014.08.025
  10. Castanho ADA, Artaxo P (2001) Wintertime and summertime São Paulo aerosol source apportionment study. Atmos Environ 35:4889–4902. doi: 10.1016/S1352-2310(01)00357-0 CrossRefGoogle Scholar
  11. CONAMA (2002) 2002 CONAMA Resolution n° 315/2002. Conselho Nacional de Meio Ambiente MMA, BrasiliaGoogle Scholar
  12. Da Rocha GO, Allen AG, Cardoso AA (2005) Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environ Sci Technol 39:5293–5301. doi: 10.1021/es048007u CrossRefGoogle Scholar
  13. De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region 3. J Hazard Mater 163:946–958. doi: 10.1016/j.jhazmat.2008.07.089 CrossRefGoogle Scholar
  14. De Oliveira Alves N, Brito J, Caumo S, Arana A, Hacon SS, Artaxo P, Hillamo R, Teinilä K, Medeiros SRB, Vasconcellos PC (2015) Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos Environ 120:277–285. doi: 10.1016/j.atmosenv.2015.08.059 CrossRefGoogle Scholar
  15. Decesari S, Fuzzi S, Facchini MC, Maenhaut W, Chi X, Schkolnik G, Falkovich A, Rudich Y, Claeys M, Pashynska V, Vas G, Kourtchev I, Vermeylen R, Hoffer A, Andreae MO, Tagliavini E, Moretti F, Artaxo P (2006) Characterization of the organic composition of aerosols from Rondonia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos Chem Phys 6:375–402. doi: 10.5194/acp-6-375-2006 CrossRefGoogle Scholar
  16. Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) NOAA Air Resources Laboratory. Model access via NOAA ARL READY, Silver Spring, Website (http://www.arl.noaa.gov/ready/hysplit4.html)Google Scholar
  17. Du H, Kong L, Cheng T, Chen J, Du J, Li L, Xia X, Leng C, Huang G (2011) Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos Environ 45:5131–5137. doi: 10.1016/j.atmosenv.2011.06.027 CrossRefGoogle Scholar
  18. Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282. doi: 10.1016/j.atmosenv.2003.11.037 CrossRefGoogle Scholar
  19. Engling G, Lee JJ, Tsai Y-W, Lung S-CC, Chou CC-K, Chan C-Y (2009) Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Sci Technol 43(7):662–672Google Scholar
  20. Engling G, Lee H-J, Sie Y-C, Wu Y-PI (2013) Anhydrosugar characteristics in biomass smoke aerosol—case study of environmental influence on particle-size of rice straw burning aerosol. J Aerosol Sci 56:2–14. doi: 10.1016/j.jaerosci.2012.10.001 CrossRefGoogle Scholar
  21. Fabbri D, Torri C, Simoneit BRT, Marynowski L, Rushdi AI, Fabiańska MJ (2009) Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos Environ 43:2286–2295. doi: 10.1016/j.atmosenv.2009.01.030 CrossRefGoogle Scholar
  22. Fleming ZL, Monks PS, Manning AJ (2012) Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39CrossRefGoogle Scholar
  23. Giannoni M, Martellini T, Del Bubba M, Gambaro A, Zangrando R, Chiari M, Lepri L, Cincinelli A (2012) The use of levoglucosan for tracing biomass burning in PM2 5 samples in Tuscany (Italy). Environ Pollut 167:7–15. doi: 10.1016/j.envpol.2012.03.016 CrossRefGoogle Scholar
  24. Graham B, Mayol-Bracero OL, Guyon P, Roberts GC, Decesari S, Facchini MC, Artaxo P, Maenhaut W, Köll P, Andreae MO (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. J Geophys Res Atmos 107:D20. doi: 10.1029/2001JD000336 CrossRefGoogle Scholar
  25. Hall D, Wu C-Y, Hsu Y-M, Stormer J, Engling G, Capeto K, Wang J, Brown S, Li H-W, Yu K-M (2012) PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmos Environ 55:164–172. doi: 10.1016/j.atmosenv.2012.03.034 CrossRefGoogle Scholar
  26. IBGE (2013) The Brazilian Institute of Geography and Statistics., http://www.ibge.gov.br. Accessed 19 May 2015Google Scholar
  27. INPE (2013) National Institute of Space Research (Brazil) - Fire Maps., http://www.dpi.inpe.br/proarco/bdqueimadas. Accessed 15 May 2015Google Scholar
  28. Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, Kinney PL, Miller RL (2010) Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7:1889–1900. doi: 10.3390/ijerph7051889
  29. Jung J, Lee S, Kim H, Kim D, Lee H, Oh S (2014) Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period. Atmos Environ 89:642–650. doi: 10.1016/j.atmosenv.2005.09.071 CrossRefGoogle Scholar
  30. Karthikeyan S, Balasubramanian R (2006) Determination of water-soluble inorganic and organic species in atmospheric fine particulate matter. Microchem J 82:49–55. doi: 10.1016/j.microc.2005.07.003 CrossRefGoogle Scholar
  31. Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526. doi: 10.1016/j.atmosenv.2012.06.039 CrossRefGoogle Scholar
  32. Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO (2010) Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. J Aerosol Sci 41:118–133. doi: 10.1016/j.jaerosci.2009.08.006 CrossRefGoogle Scholar
  33. Lee T, Sullivan AP, Mack L, Jimenez JL (2010) Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci Tech 44:I9. doi: 10.1080/02786826.2010.499884 Google Scholar
  34. Li X, Wang L, Wang Y, Wen T, Yang Y, Zhao Y, Wang Y (2012) Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmos Environ 50:278–286. doi: 10.1016/j.atmosenv.2011.12.021 CrossRefGoogle Scholar
  35. Liu D, Li J, Zhang Y, Xu Y, Liu X, Ding P, Shen C, Chen Y, Tian C, Zhang G (2013) The use of levoglucosan and radiocarbon for source apportionment of PM 2.5 carbonaceous aerosols at a background site in east China. Environ Sci Technol 47:10454–10461. doi: 10.1021/es401250k Google Scholar
  36. Maenhaut W, Vermeylen R, Claeys M, Vercauteren J, Matheeussen C, Roekens E (2012) Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium. Sci Total Environ 437:226–236. doi: 10.1016/j.scitotenv.2012.08.015 CrossRefGoogle Scholar
  37. Magalhães D, Bruns R, Vasconcellos, PC (2007) Hidrocarbonetos policíclicos aromáticos como traçadores da queima de cana-de-açúcar: Uma abordagem estatística. Quim Nova, 30:577–581. doi: 10.1590/S0100-40422007000300014.
  38. Miguel AH, Kirchstetter TW, Harley RA (1998) On-road emissions of particulate polycyclic aromatic hydro-carbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455CrossRefGoogle Scholar
  39. Miranda RM, Andrade MF, Fornaro A, Astolfo R, Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities Air Qual Atmos. Air Qual Atmos Health 5:63–77. doi: 10.1007/s11869-010-0124-1 CrossRefGoogle Scholar
  40. Nava S, Lucarelli F, Amato F, Becagli S, Calzolai G, Chiari M, Giannoni M, Traversi R, Udisti R (2015) Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records. Sci Total Environ 511:11–20. doi: 10.1016/j.scitotenv.2014.11.034 CrossRefGoogle Scholar
  41. Newby DE, Mannucci PM, Tell GS, Baccarelli A, Brook RD, Donaldson K, Forastiere F, Franchini M, Franco OH, Graham I, Hoek G, Hoffmann B, Hoylaerts MF, Künzli N, Mills N, Pekkanen J, Peters A, Piepoli MF, Rajagopalan S, Storey RF (2014) Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93. doi: 10.1093/eurheartj/ehu458 CrossRefGoogle Scholar
  42. Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M, Silva H, Oliveira C, Camões F (2011) Size distribution of polyciclic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83:1588–1596. doi: 10.1016/j.chemosphere.2011.01.011 CrossRefGoogle Scholar
  43. Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Persp 117:957–963. doi: 10.1289/ehp.0800185 CrossRefGoogle Scholar
  44. Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42:7530–7543. doi: 10.1016/j.atmosenv.2008.05.032 CrossRefGoogle Scholar
  45. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540. doi: 10.1002/anie.200501122 CrossRefGoogle Scholar
  46. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi: 10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  47. Saarnio K, Teinilä K, Aurela M, Timonen H, Hillamo R (2010) High-performance anion-exchange chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric particulate matter. Anal Bioanal Chem 398:2253–2264. doi: 10.1007/s00216-010-4151-4 CrossRefGoogle Scholar
  48. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. doi: 10.1016/S0167-7799(02)01943-1 CrossRefGoogle Scholar
  49. Scaramboni C, Urban RC, Lima-Souza M, Nogueira RFP, Cardoso AA, Allen AG, Campos MLAM (2015) Total sugars in atmospheric aerosols: an alternative tracer for biomass burning. Atmos Environ 100:185–192. doi: 10.1016/j.atmosenv.2014.11.003 CrossRefGoogle Scholar
  50. Schkolnik G, Falkovich AH, Rudich Y, Maenhaut W, Artaxo P (2005) New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples. Environ. Sci Technol 39:2744–2752. doi: 10.1021/es048363c CrossRefGoogle Scholar
  51. Sicre MA, Marty JC, Saliot A, Aparicio X, Grimalt J, Albaiger J (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin’. Atmos Environ 21:2247–2259CrossRefGoogle Scholar
  52. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182. doi: 10.1016/S1352-2310(98)00145-9 CrossRefGoogle Scholar
  53. Souza DZ, Vasconcellos PC, Lee H, Aurela M, Saarnio K, Teinilä K, Hillamo R (2014) Composition of PM2.5 and PM10 Collected at Urban Sites in Brazil. Aerosol Air Qual Res 14:168–176. doi: 10.4209/aaqr.2013.03.0071 Google Scholar
  54. Sullivan A, Holden L, Patterson G, McMeeking S, Kreidenweis W, Malm W, Hao C, Wold J, Collett JL Jr (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon. J Geophys Res 113:D22302. doi: 10.1029/2008JD010216 CrossRefGoogle Scholar
  55. Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111:D7. doi: 10.1029/2005JD006590 CrossRefGoogle Scholar
  56. Timonen H, Carbone S, Aurela M, Saarnio K, Saarikoski S, Ng NL, Canagaratna MR, Kulmala M, Kerminen V-M, Worsnop DR, Hillamo R (2013) Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. J Aerosol Sci 56:61–77. doi: 10.1016/j.jaerosci.2012.06.005 CrossRefGoogle Scholar
  57. Urban RC, Alves CA, Allen AG, Cardoso AA, Queiroz MEC, Campos MLAM (2014) Sugar markers in aerosol particles from an agro-industrial region in Brazil. Atmos Environ 90:106–112. doi: 10.1016/j.atmosenv.2014.03.034 CrossRefGoogle Scholar
  58. Valle-Hernández BL, Mugica-Álvarez V, Salinas-Talavera E, Amador-Muñoz O, Murillo-Tovar MA, Villalobos-Pietrini R, De Vizcaya-Ruíz A (2010) Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City. Sci Total Environ 408:5429–5438. doi: 10.1016/j.scitotenv.2010.07.065 CrossRefGoogle Scholar
  59. Vasconcellos PC, Balasubramanian R, Bruns RE, Sanchez-Ccoyllo O, Andrade MF, Flues M (2007) Water-soluble ions and trace metals in airborne particles over urban areas of the state of São Paulo, Brazil: influences of local sources and long range transport. Water Air Soil Poll 186:63–73. doi: 10.1007/s11270-007-9465-2 CrossRefGoogle Scholar
  60. Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O, Bustillos JOV, Lee H, Santos FC, Nascimento KH, Araújo MP, Saarnio K, Teinilä K, Hillamo R (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408:5836–5844. doi: 10.1016/j.scitotenv.2010.08.012 CrossRefGoogle Scholar
  61. Vasconcellos PC, Souza DZ, Ávila SG, Araújo MP, Naoto E, Nascimento KH, Cavalcante FS, Santos M, Smichowskic P, Behrentze E (2011) Comparative study of the atmospheric chemical composition of three South American cities. Atmos Environ 45:5770–5777. doi: 10.1016/j.atmosenv.2011.07.018 CrossRefGoogle Scholar
  62. Vieira-Filho MS, Pedrotti JJ, Fornaro A (2013) Contribution of long and mid-range transport on the sodium and potassium concentrations in rainwater samples, São Paulo megacity, Brazil. Atmos Environ 79:299–307. doi: 10.1016/j.atmosenv.2013.05.047 CrossRefGoogle Scholar
  63. Villalobos AM, Barraza F, Jorquera H, Schauer JJ (2015) Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci Total Environ 512:133–142. doi: 10.1016/j.scitotenv.2015.01.006 CrossRefGoogle Scholar
  64. World Health Organization (2000) Air Quality Guidelines for Europe, second edn. WHO, CopenhagenGoogle Scholar
  65. World Health Organization (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005: Summary of risk assessmentGoogle Scholar
  66. Yassaa N, Meklati BY, Cecinato A, Marino F (2001) Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. Atmos Environ 35:1843–1851. doi: 10.1016/S1352-2310(00)00514-8 CrossRefGoogle Scholar
  67. Yttri KE, Schnelle-Kreis J, Maenhaut W, Abbaszade G, Alves C, Bjerke A, Bonnier N, Bossi R, Claeys M, Dye C, Evtyugina M, García-Gacio D, Hillamo R, Hoffer A, Hyder M, Iinuma Y, Jaffrezo J-L, Kasper-Giebl A, Kiss G, López-Mahia PL, Pio C, Piot C, Ramirez-Santa-Cruz C, Sciare J, Teinilä K, Vermeylen R, Vicente A, Zimmermann R (2015) An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmos Meas Tech 8:125–147. doi: 10.5194/amt-8-125-2015 CrossRefGoogle Scholar
  68. Zhang Z, Gao J, Engling G, Tao J, Chai F, Zhang L, Zhang R, Sang X, Chan C-Y, Lin Z, Cao J (2015) Characteristics and applications of size-segregated biomass burning tracers in China’s Pearl River Delta region. Atmos Environ 102:290–301. doi: 10.1016/j.atmosenv.2014.12.009 CrossRefGoogle Scholar
  69. Zhao Y, Gao Y (2008) Acidic species and chloride depletion in coarse aerosol particles in the US east coast. Sci Total Environ 407:541–547. doi: 10.1016/j.scitotenv.2008.09.002 CrossRefGoogle Scholar
  70. Zhao J, Zhang F, Xu Y, Chen J (2011) Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmos Res 99:546–562. doi: 10.1016/j.atmosres.2010.12.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • G. M. Pereira
    • 1
  • N. De Oliveira Alves
    • 2
  • S. E. S. Caumo
    • 1
  • S. Soares
    • 1
  • K. Teinilä
    • 3
  • D. Custódio
    • 4
  • R. Hillamo
    • 3
  • C. Alves
    • 4
  • P. C. Vasconcellos
    • 1
  1. 1.Institute of ChemistryUniversity of São PauloSão PauloBrazil
  2. 2.Faculty of MedicineUniversity of São PauloSão PauloBrazil
  3. 3.Finnish Meteorological Institute, Air Quality ResearchHelsinkiFinland
  4. 4.CESAM and Department of EnvironmentUniversity of AveiroAveiroPortugal

Personalised recommendations