Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances
- 722 Downloads
- 19 Citations
Abstract
Residential biomass combustion may represent a significant emission source of polycyclic aromatic hydrocarbons (PAHs) and derivatives, some of which are known for their toxicity. In this study, a manually operated batch stove (burning wood logs) and an automatic pellet stove were selected to carry out combustion experiments. Two types of firewood (pine and eucalypt) were used as fuels in the manual stove. Four types of pellets and three agricultural fuels (olive pit, almond shell and shell of pine nuts) were selected for the automatic stove. The particulate matter (PM10) samples from the exhaust flue gas were solvent extracted and analysed for 26 parent and alkyl-PAHs, 15 nitrated PAHs (NPAHs), 15 oxygenated PAHs (OPAHs) and 4 azaarenes (AZAs) by gas chromatography–mass spectrometry. The global parent PAH emission factors (EFs) for the pellet stove ranged from 0.046 to 0.51 mg kg−1 of fuel burned, dry basis (db). The EFs obtained for the manual stove varied from 0.33 to 1.97 and from 8.65 to 24.3 mg kg−1 (db) for the combustion of eucalypt and pine, respectively. The devolatilisation phase of softwood in the latter appliance is critical because benzo[a]pyrene emissions can be more than 1,000 times higher than the values observed for any other combustion stages, appliance or biofuels. As for parent PAHs, it was observed that emissions of OPAHs, NPAHs and AZAs vary greatly depending on either the biofuel or the combustion technology.
Keywords
PAHs Oxygenated PAHs Nitrated PAHs Azaarenes PM10 Residential biomass combustionNotes
Acknowledgements
This work was financially supported by AIRUSE-Testing and development of air quality mitigation measures in Southern Europe, LIFE 11 ENV/ES/000584. Ana Vicente acknowledges the Postdoc grant SFRH/BPD/88988/2012 from the Portuguese Science Foundation (FCT) and the financing programme POPH/FSE.
Supplementary material
References
- Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo J-L (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys part 2: particle size distribution. Atmos Environ 42(1):55–64CrossRefGoogle Scholar
- Alves CA (2008) Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. Ann Braz Acad Sci 80(1):21–82CrossRefGoogle Scholar
- Alves C, Gonçalves C, Fernandes AP, Tarelho L, Pio C (2011) Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos Res 101(3):692–700CrossRefGoogle Scholar
- Bandowe BAM, Wilcke W (2010) Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils. J Environ Qual 39(4):1349–1358CrossRefGoogle Scholar
- Bandowe BAM, Meusel H, Huang R-J, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87CrossRefGoogle Scholar
- Belis CA, Cancelinha J, Duane M, Forcina V, Pedroni V, Passarella R, Tanet G, Douglas K, Piazzalunga A, Bolzacchini E, Sangiorgi G, Perrone M-G, Ferrero L, Fermo P, Larsen BR (2011) Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmos Environ 45(39):7266–7275CrossRefGoogle Scholar
- Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fermo P (2011) PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ 409(22):4788–4795CrossRefGoogle Scholar
- Bleeker EAJ, Van der Geest HG, Klamer HJC, De Voogt P, Wind E, Kraak MHS (1999) Toxic and genotoxic effects of azaarenes: isomers and metabolites. Polycycl Aromat Comp 13:191–203CrossRefGoogle Scholar
- Bleeker EAJ, Wiegman S, de Voogt P, Kraak M, Leslie HA, de Haas E, Admiraal W (2002) Toxicity of azaarenes. Rev Environ Contam Toxicol 173:39–83Google Scholar
- Boman C, Nordin A, Westerholm R, Pettersson E (2005) Evaluation of a constant volume sampling setup for residential biomass fired appliances—influence of dilution conditions on particulate and PAH emissions. Biomass Bioenerg 29:258–268CrossRefGoogle Scholar
- Boman C, Pettersson E, Westerholm R, Boström D, Nordin A (2011) Stove performance and emission characteristics in residential wood log and pellet combustion, part 1: pellet stoves. Energ Fuel 25(1):307–314CrossRefGoogle Scholar
- Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(s3):451–489CrossRefGoogle Scholar
- Bressi M, Sciare J, Ghersi V, Mihalopoulos N, Petit J-E, Nicolas JB, Moukhtar S, Rosso A, Féron A, Bonnaire N, Poulakis E, Theodosi C (2014) Sources and geographical origins of fine aerosols in Paris (France). Atmos Chem Phys 14(16):8813–8839CrossRefGoogle Scholar
- Burkart K, Nehls I, Win T, Endlicher W (2013) The carcinogenic risk and variability of particulate-bound polycyclic aromatic hydrocarbons with consideration of meteorological conditions. Air Qual Atmos Health 6:27–38CrossRefGoogle Scholar
- Calvo AI, Tarelho LAC, Alves CA, Duarte M, Nunes T (2014) Characterization of operating conditions of two residential wood combustion appliances. Fuel Process Technol 126:222–232CrossRefGoogle Scholar
- Chen Y, Bi X, Mai B, Sheng G, Fu J (2004) Emission characterization of particulate/gaseous phases and size association for polycyclic aromatic hydrocarbons from residential coal combustion. Fuel 83(7–8):781–790CrossRefGoogle Scholar
- Chuesaard T, Chetiyanukornkul T, Kameda T, Hayakawa K, Toriba A (2014) Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol Air Qual Res 14:1247–1257Google Scholar
- Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347–399CrossRefGoogle Scholar
- De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958CrossRefGoogle Scholar
- Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res Toxicol 371(3–4):123–157CrossRefGoogle Scholar
- Fernandes AP, Alves CA, Gonçalves C, Tarelho L, Pio C, Schimdl C, Bauer H (2011) Emission factors from residential combustion appliances burning Portuguese biomass fuels. J Environ Monitor 13:3196–3206Google Scholar
- Garcia-Maraver A, Zamorano M, Fernandes U, Rabaçal M, Costa M (2014) Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 119:141–152CrossRefGoogle Scholar
- Gonçalves C, Alves C, Evtyugina M, Mirante F, Pio C, Caseiro A, Schmidl C, Bauer H, Carvalho F (2010) Characterisation of PM10 emissions from woodstove combustion of common woods grown in Portugal. Atmos Environ 44(35):4474–4480CrossRefGoogle Scholar
- Gonçalves C, Alves C, Fernandes AP, Monteiro C, Tarelho L, Evtyugina M, Pio C (2011) Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical portuguese wood species. Atmos Environ 45(27):4533–4545CrossRefGoogle Scholar
- Gonçalves C, Alves C, Pio C (2012) Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal. Atmos Environ 50:297–306CrossRefGoogle Scholar
- Hays MD, Fine PM, Geron CD, Kleeman MJ, Brian KG (2005) Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos Environ 39(36):6747–6764CrossRefGoogle Scholar
- Hedberg E, Kristensson A, Ohlsson M, Johansson C, Johansson P-A, Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36:4823–4837CrossRefGoogle Scholar
- Huang W, Zhu T, Pan X, Hu M, Lu S-E, Lin Y, Wang T, Zhang Y, Tang X (2012) Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. Am J Epidemiol 176(2):117–126CrossRefGoogle Scholar
- Hytonen K, Yli-Pirila P, Tissari J, Grohn A, Riipinen I, Lehtinen KEJ, Jokiniemi J (2009) Gas–particle distribution of PAHs in wood combustion emission determined with annular denuders, filter, and polyurethane foam adsorbent. Aerosol Sci Technol 43:442–454CrossRefGoogle Scholar
- ICNF (2013) IFN6–Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa, p 34Google Scholar
- Iinuma Y, Brüggemann E, Gnauk T, Müller K, Andreae MO, Helas G, Parmar R, Herrmann H (2007) Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res 112, D08209Google Scholar
- Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38(25):4183–4195CrossRefGoogle Scholar
- Kalaitzoglou M, Terzi E, Samara C (2004) Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece. Atmos Environ 38(16):2545–2560CrossRefGoogle Scholar
- Katsoyiannis A, Terzi E, Cai Q-Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69(8):1337–1339CrossRefGoogle Scholar
- Lamberg H, Nuutinen K, Tissari J, Ruusunen J, Yli-Pirilä P, Sippula O, Tapanainen M, Jalava P, Makkonen U, Teinilä K, Saarnio K, Hillamo R, Hirvonen M-R, Jokiniemi J (2011) Physicochemical characterization of fine particles from small-scale wood combustion. Atmos Environ 45(40):7635–7643CrossRefGoogle Scholar
- Leskinen J, Tissari J, Uski O, Virén A, Torvela T, Kaivosoja T, Lamberg H, Nuutinen I, Kettunen T, Joutsensaari J, Jalava PI, Sippula O, Hirvonen M-R, Jokiniemi J (2014) Fine particle emissions in three different combustion conditions of a wood chip-fired appliance—particulate physico-chemical properties and induced cell death. Atmos Environ 86:129–139CrossRefGoogle Scholar
- Lippmann M (2012) Particulate matter (PM) air pollution and health: regulatory and policy implications. Air Qual Atmos Health 5:237–241CrossRefGoogle Scholar
- Lu H, Zhu L, Zhu N (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43:978–983CrossRefGoogle Scholar
- McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34(11):2080–2091CrossRefGoogle Scholar
- Monteiro A, Miranda AI, Borrego C, Vautard R, Ferreira J, Perez AT (2007) Long-term assessment of particulate matter using CHIMERE model. Atmos Environ 41(36):7726–7738CrossRefGoogle Scholar
- Oanh NTK, Reutergårdh LB, Dung NT (1999) Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33:2703–2709CrossRefGoogle Scholar
- Oanh NTK, Nghiem LH, Phyu YL (2002) Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene. Environ Sci Technol 36(5):833–839CrossRefGoogle Scholar
- Obaidullah M, Bram S, Verma VK, De Ruyck J (2012) A review on particle emissions from small scale biomass combustion. Int J Renew Energy Res 2(1):147–159Google Scholar
- Orasche J, Seidel T, Hartmann H, Schnelle-kreis J, Chow JC, Ruppert H, Zimmermann R (2012) Comparison of emissions from wood combustion. Part 1: emission factors and characteristics from different small-scale residential heating appliances considering particulate matter and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential. Energ Fuel 26:6695–6704Google Scholar
- Oros DR, Abas MR, Omar NYMJ, Rahman NA, Simoneit BRT (2006) Identification and emission factors of molecular tracers in organic aerosols from biomass burning: part 3. Grasses. Appl Geochem 21(6):919–940CrossRefGoogle Scholar
- Ostro BD, Feng W-Y, Broadwin R, Malig BJ, Green RS, Lipsett MJ (2008) The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med 65(11):750–756CrossRefGoogle Scholar
- Ozgen S, Caserini S, Galante S, Giugliano M, Angelino E, Marongiu A, Hugony F, Migliavacca G, Morreale C (2014) Emission factors from small scale appliances burning wood and pellets. Atmos Environ 94:144–153CrossRefGoogle Scholar
- Pedersen DU, Durant JL, Penman BW, Crespi CL, Hemond HF, Lafleur AL, Cass GR (2004) Human-cell mutagens in respirable airborne particles in the northeastern United States. 1. Mutagenicity of fractionated samples. Environ Sci Technol 38(3):682–689CrossRefGoogle Scholar
- Pettersson E, Boman C, Westerholm R, Boström D, Nordin A (2011) Stove performance and emission characteristics in residential wood log and pellet combustion, part 2: wood stove. Energ Fuel 25(1):315–323CrossRefGoogle Scholar
- Ramdahl T (1983) Retene e a molecular marker of wood combustion in ambient air. Nature 306:580–582CrossRefGoogle Scholar
- Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinilä K, Saarnio K, Seco R, Peñuelas J, Mohr C, Prévôt ASH, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci Total Environ 427–428:175–190CrossRefGoogle Scholar
- Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1998) Sources of fine organic aerosol.9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32(1):13–22CrossRefGoogle Scholar
- Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources.3.C1-C29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35(9):1716–1728CrossRefGoogle Scholar
- Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, Kasper-Giebl A, Puxbaum H (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42:126–141CrossRefGoogle Scholar
- Shen G, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen H, Wei W, Tao S (2012a) Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmos Environ 60:234–237CrossRefGoogle Scholar
- Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen H, Yang Y, Wang W, Wang X, Liu W, Simonich SLM (2012b) Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol 46(15):8123–8130CrossRefGoogle Scholar
- Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Yang Y, Wang W, Wang X, Simonich SLM (2012c) Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. Environ Sci Technol 46(8):4666–4672CrossRefGoogle Scholar
- Shen G, Xue M, Wei S, Chen Y, Zhao Q, Li B, Wu H, Tao S (2013a) Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J Environ Sci (China) 25(9):1808–1816CrossRefGoogle Scholar
- Shen G, Wei S, Zhang Y, Wang B, Wang R, Shen H, Li W, Huang Y, Chen Y, Chen H, Tao S (2013b) Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Biomass Bionerg 55:141–147CrossRefGoogle Scholar
- Shen G, Tao S, Chen Y, Zhang Y, Wei S, Xue M, Wang B, Wang R, Lu Y, Li W, Shen H, Huang Y, Chen H (2013c) Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China. Environ Sci Technol 47:14485–14494CrossRefGoogle Scholar
- Sippula O, Hyto K, Tissari J, Raunemaa T, Jokiniemi J (2007) Effect of wood fuel on the emissions from a top-feed pellet stove. Energ Fuel 21:1151–1160CrossRefGoogle Scholar
- Sovadinová I, Bláha L, Janošek J, Hilscherová K, Giesy JP, Jones PD, Holoubek I (2006) Cytotoxicity and aryl hydrocarbon receptor–mediated activity of N-heterocyclic polycyclic aromatic hydrocarbons: structure–activity relationships. Environ Toxicol Chem 25(5):1291–1297Google Scholar
- Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bionerg 35:1663–1667CrossRefGoogle Scholar
- Tissari J, Hytönen K, Lyyränen J, Jokiniemi J (2007) A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos Environ 41(37):8330–8344CrossRefGoogle Scholar
- Tissari J, Lyyränen J, Hytönen K, Sippula O, Tapper U, Frey A, Saarnio K, Pennanen AS, Hillamo R, Salonen RO, Hirvonen M-R, Jokiniemi J (2008) Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos Environ 42(34):7862–7873CrossRefGoogle Scholar
- Vicente ED, Duarte MA, Calvo AI, Nunes TF, Tarelho L, Alves CA (2015a) Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process Technol 131:182–192CrossRefGoogle Scholar
- Vicente ED, Duarte MA, Tarelho LAC, Nunes TFV, Amato F, Querol X, Colombi C, Gianelli V, Alves CA (2015b) Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmos Environ (in press)Google Scholar
- Vu B, Alves CA, Gonçalves C, Pio C, Gonçalves F, Pereira R (2012) Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal. Environ Pollut 166:172–181CrossRefGoogle Scholar
- Waked A, Favez O, Alleman LY, Piot C, Petit J-E, Delaunay T, Verlinden E, Golly B, Besombes J-L, Jaffrezo J-L, Leoz-Garziandia E (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14(7):3325–3346CrossRefGoogle Scholar
- White KL, Kawabata TT, Ladics GS (1994) Mechanisms of polycyclic aromatic hydrocarbon immunotoxicity. In: Dean JH, Luster MI, Munson AE, Kimer I (eds) Immunotoxicology and immunopharmacology, 2nd edn. Raven, New York, pp 123–146Google Scholar
- Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol 20:149–183CrossRefGoogle Scholar
- Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515CrossRefGoogle Scholar
- Zhang Y, Tao S, Shen H, Ma J (2009) Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. PNAS 106(50):21063–21067CrossRefGoogle Scholar