Air Quality, Atmosphere & Health

, Volume 9, Issue 6, pp 653–668 | Cite as

Particulate phase emission of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, azaarenes and nitrated PAHs) from manually and automatically fired combustion appliances

  • Estela Domingos Vicente
  • Ana M. Vicente
  • Benjamin A. Musa Bandowe
  • Célia A. Alves


Residential biomass combustion may represent a significant emission source of polycyclic aromatic hydrocarbons (PAHs) and derivatives, some of which are known for their toxicity. In this study, a manually operated batch stove (burning wood logs) and an automatic pellet stove were selected to carry out combustion experiments. Two types of firewood (pine and eucalypt) were used as fuels in the manual stove. Four types of pellets and three agricultural fuels (olive pit, almond shell and shell of pine nuts) were selected for the automatic stove. The particulate matter (PM10) samples from the exhaust flue gas were solvent extracted and analysed for 26 parent and alkyl-PAHs, 15 nitrated PAHs (NPAHs), 15 oxygenated PAHs (OPAHs) and 4 azaarenes (AZAs) by gas chromatography–mass spectrometry. The global parent PAH emission factors (EFs) for the pellet stove ranged from 0.046 to 0.51 mg kg−1 of fuel burned, dry basis (db). The EFs obtained for the manual stove varied from 0.33 to 1.97 and from 8.65 to 24.3 mg kg−1 (db) for the combustion of eucalypt and pine, respectively. The devolatilisation phase of softwood in the latter appliance is critical because benzo[a]pyrene emissions can be more than 1,000 times higher than the values observed for any other combustion stages, appliance or biofuels. As for parent PAHs, it was observed that emissions of OPAHs, NPAHs and AZAs vary greatly depending on either the biofuel or the combustion technology.


PAHs Oxygenated PAHs Nitrated PAHs Azaarenes PM10 Residential biomass combustion 



This work was financially supported by AIRUSE-Testing and development of air quality mitigation measures in Southern Europe, LIFE 11 ENV/ES/000584. Ana Vicente acknowledges the Postdoc grant SFRH/BPD/88988/2012 from the Portuguese Science Foundation (FCT) and the financing programme POPH/FSE.

Supplementary material

11869_2015_364_MOESM1_ESM.docx (226 kb)
ESM 1 Table S1. Details of statistical analysis applied to PM10 emission factors. Table S2. Limits of detection (LOD) of target polycyclic aromatic compounds analysed. Figure S1. Schematic representation of the experimental installation (I-wood stove; II-pellet stove). A–Stove; B–Combustion chamber; C–Weight sensor; D–Air flow meter; E–Exhaust duct; F, I, H–Gas sampling and analysis system, G–Water-cooled gas sampling probe; K–Dilution tunnel; J–Pitot tube; L–PM10 sampling system; M–Fan. (DOCX 226 kb)


  1. Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo J-L (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys part 2: particle size distribution. Atmos Environ 42(1):55–64CrossRefGoogle Scholar
  2. Alves CA (2008) Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. Ann Braz Acad Sci 80(1):21–82CrossRefGoogle Scholar
  3. Alves C, Gonçalves C, Fernandes AP, Tarelho L, Pio C (2011) Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos Res 101(3):692–700CrossRefGoogle Scholar
  4. Bandowe BAM, Wilcke W (2010) Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils. J Environ Qual 39(4):1349–1358CrossRefGoogle Scholar
  5. Bandowe BAM, Meusel H, Huang R-J, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87CrossRefGoogle Scholar
  6. Belis CA, Cancelinha J, Duane M, Forcina V, Pedroni V, Passarella R, Tanet G, Douglas K, Piazzalunga A, Bolzacchini E, Sangiorgi G, Perrone M-G, Ferrero L, Fermo P, Larsen BR (2011) Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmos Environ 45(39):7266–7275CrossRefGoogle Scholar
  7. Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fermo P (2011) PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ 409(22):4788–4795CrossRefGoogle Scholar
  8. Bleeker EAJ, Van der Geest HG, Klamer HJC, De Voogt P, Wind E, Kraak MHS (1999) Toxic and genotoxic effects of azaarenes: isomers and metabolites. Polycycl Aromat Comp 13:191–203CrossRefGoogle Scholar
  9. Bleeker EAJ, Wiegman S, de Voogt P, Kraak M, Leslie HA, de Haas E, Admiraal W (2002) Toxicity of azaarenes. Rev Environ Contam Toxicol 173:39–83Google Scholar
  10. Boman C, Nordin A, Westerholm R, Pettersson E (2005) Evaluation of a constant volume sampling setup for residential biomass fired appliances—influence of dilution conditions on particulate and PAH emissions. Biomass Bioenerg 29:258–268CrossRefGoogle Scholar
  11. Boman C, Pettersson E, Westerholm R, Boström D, Nordin A (2011) Stove performance and emission characteristics in residential wood log and pellet combustion, part 1: pellet stoves. Energ Fuel 25(1):307–314CrossRefGoogle Scholar
  12. Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(s3):451–489CrossRefGoogle Scholar
  13. Bressi M, Sciare J, Ghersi V, Mihalopoulos N, Petit J-E, Nicolas JB, Moukhtar S, Rosso A, Féron A, Bonnaire N, Poulakis E, Theodosi C (2014) Sources and geographical origins of fine aerosols in Paris (France). Atmos Chem Phys 14(16):8813–8839CrossRefGoogle Scholar
  14. Burkart K, Nehls I, Win T, Endlicher W (2013) The carcinogenic risk and variability of particulate-bound polycyclic aromatic hydrocarbons with consideration of meteorological conditions. Air Qual Atmos Health 6:27–38CrossRefGoogle Scholar
  15. Calvo AI, Tarelho LAC, Alves CA, Duarte M, Nunes T (2014) Characterization of operating conditions of two residential wood combustion appliances. Fuel Process Technol 126:222–232CrossRefGoogle Scholar
  16. Chen Y, Bi X, Mai B, Sheng G, Fu J (2004) Emission characterization of particulate/gaseous phases and size association for polycyclic aromatic hydrocarbons from residential coal combustion. Fuel 83(7–8):781–790CrossRefGoogle Scholar
  17. Chuesaard T, Chetiyanukornkul T, Kameda T, Hayakawa K, Toriba A (2014) Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol Air Qual Res 14:1247–1257Google Scholar
  18. Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347–399CrossRefGoogle Scholar
  19. De La Torre-Roche RJ, Lee W-Y, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163(2–3):946–958CrossRefGoogle Scholar
  20. Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res Toxicol 371(3–4):123–157CrossRefGoogle Scholar
  21. Fernandes AP, Alves CA, Gonçalves C, Tarelho L, Pio C, Schimdl C, Bauer H (2011) Emission factors from residential combustion appliances burning Portuguese biomass fuels. J Environ Monitor 13:3196–3206Google Scholar
  22. Garcia-Maraver A, Zamorano M, Fernandes U, Rabaçal M, Costa M (2014) Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 119:141–152CrossRefGoogle Scholar
  23. Gonçalves C, Alves C, Evtyugina M, Mirante F, Pio C, Caseiro A, Schmidl C, Bauer H, Carvalho F (2010) Characterisation of PM10 emissions from woodstove combustion of common woods grown in Portugal. Atmos Environ 44(35):4474–4480CrossRefGoogle Scholar
  24. Gonçalves C, Alves C, Fernandes AP, Monteiro C, Tarelho L, Evtyugina M, Pio C (2011) Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical portuguese wood species. Atmos Environ 45(27):4533–4545CrossRefGoogle Scholar
  25. Gonçalves C, Alves C, Pio C (2012) Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal. Atmos Environ 50:297–306CrossRefGoogle Scholar
  26. Hays MD, Fine PM, Geron CD, Kleeman MJ, Brian KG (2005) Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos Environ 39(36):6747–6764CrossRefGoogle Scholar
  27. Hedberg E, Kristensson A, Ohlsson M, Johansson C, Johansson P-A, Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36:4823–4837CrossRefGoogle Scholar
  28. Huang W, Zhu T, Pan X, Hu M, Lu S-E, Lin Y, Wang T, Zhang Y, Tang X (2012) Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. Am J Epidemiol 176(2):117–126CrossRefGoogle Scholar
  29. Hytonen K, Yli-Pirila P, Tissari J, Grohn A, Riipinen I, Lehtinen KEJ, Jokiniemi J (2009) Gas–particle distribution of PAHs in wood combustion emission determined with annular denuders, filter, and polyurethane foam adsorbent. Aerosol Sci Technol 43:442–454CrossRefGoogle Scholar
  30. ICNF (2013) IFN6–Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa, p 34Google Scholar
  31. Iinuma Y, Brüggemann E, Gnauk T, Müller K, Andreae MO, Helas G, Parmar R, Herrmann H (2007) Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J Geophys Res 112, D08209Google Scholar
  32. Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38(25):4183–4195CrossRefGoogle Scholar
  33. Kalaitzoglou M, Terzi E, Samara C (2004) Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece. Atmos Environ 38(16):2545–2560CrossRefGoogle Scholar
  34. Katsoyiannis A, Terzi E, Cai Q-Y (2007) On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere 69(8):1337–1339CrossRefGoogle Scholar
  35. Lamberg H, Nuutinen K, Tissari J, Ruusunen J, Yli-Pirilä P, Sippula O, Tapanainen M, Jalava P, Makkonen U, Teinilä K, Saarnio K, Hillamo R, Hirvonen M-R, Jokiniemi J (2011) Physicochemical characterization of fine particles from small-scale wood combustion. Atmos Environ 45(40):7635–7643CrossRefGoogle Scholar
  36. Leskinen J, Tissari J, Uski O, Virén A, Torvela T, Kaivosoja T, Lamberg H, Nuutinen I, Kettunen T, Joutsensaari J, Jalava PI, Sippula O, Hirvonen M-R, Jokiniemi J (2014) Fine particle emissions in three different combustion conditions of a wood chip-fired appliance—particulate physico-chemical properties and induced cell death. Atmos Environ 86:129–139CrossRefGoogle Scholar
  37. Lippmann M (2012) Particulate matter (PM) air pollution and health: regulatory and policy implications. Air Qual Atmos Health 5:237–241CrossRefGoogle Scholar
  38. Lu H, Zhu L, Zhu N (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43:978–983CrossRefGoogle Scholar
  39. McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34(11):2080–2091CrossRefGoogle Scholar
  40. Monteiro A, Miranda AI, Borrego C, Vautard R, Ferreira J, Perez AT (2007) Long-term assessment of particulate matter using CHIMERE model. Atmos Environ 41(36):7726–7738CrossRefGoogle Scholar
  41. Oanh NTK, Reutergårdh LB, Dung NT (1999) Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33:2703–2709CrossRefGoogle Scholar
  42. Oanh NTK, Nghiem LH, Phyu YL (2002) Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene. Environ Sci Technol 36(5):833–839CrossRefGoogle Scholar
  43. Obaidullah M, Bram S, Verma VK, De Ruyck J (2012) A review on particle emissions from small scale biomass combustion. Int J Renew Energy Res 2(1):147–159Google Scholar
  44. Orasche J, Seidel T, Hartmann H, Schnelle-kreis J, Chow JC, Ruppert H, Zimmermann R (2012) Comparison of emissions from wood combustion. Part 1: emission factors and characteristics from different small-scale residential heating appliances considering particulate matter and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential. Energ Fuel 26:6695–6704Google Scholar
  45. Oros DR, Abas MR, Omar NYMJ, Rahman NA, Simoneit BRT (2006) Identification and emission factors of molecular tracers in organic aerosols from biomass burning: part 3. Grasses. Appl Geochem 21(6):919–940CrossRefGoogle Scholar
  46. Ostro BD, Feng W-Y, Broadwin R, Malig BJ, Green RS, Lipsett MJ (2008) The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med 65(11):750–756CrossRefGoogle Scholar
  47. Ozgen S, Caserini S, Galante S, Giugliano M, Angelino E, Marongiu A, Hugony F, Migliavacca G, Morreale C (2014) Emission factors from small scale appliances burning wood and pellets. Atmos Environ 94:144–153CrossRefGoogle Scholar
  48. Pedersen DU, Durant JL, Penman BW, Crespi CL, Hemond HF, Lafleur AL, Cass GR (2004) Human-cell mutagens in respirable airborne particles in the northeastern United States. 1. Mutagenicity of fractionated samples. Environ Sci Technol 38(3):682–689CrossRefGoogle Scholar
  49. Pettersson E, Boman C, Westerholm R, Boström D, Nordin A (2011) Stove performance and emission characteristics in residential wood log and pellet combustion, part 2: wood stove. Energ Fuel 25(1):315–323CrossRefGoogle Scholar
  50. Ramdahl T (1983) Retene e a molecular marker of wood combustion in ambient air. Nature 306:580–582CrossRefGoogle Scholar
  51. Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinilä K, Saarnio K, Seco R, Peñuelas J, Mohr C, Prévôt ASH, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci Total Environ 427–428:175–190CrossRefGoogle Scholar
  52. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1998) Sources of fine organic aerosol.9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32(1):13–22CrossRefGoogle Scholar
  53. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources.3.C1-C29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35(9):1716–1728CrossRefGoogle Scholar
  54. Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, Kasper-Giebl A, Puxbaum H (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42:126–141CrossRefGoogle Scholar
  55. Shen G, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen H, Wei W, Tao S (2012a) Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmos Environ 60:234–237CrossRefGoogle Scholar
  56. Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen H, Yang Y, Wang W, Wang X, Liu W, Simonich SLM (2012b) Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol 46(15):8123–8130CrossRefGoogle Scholar
  57. Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Yang Y, Wang W, Wang X, Simonich SLM (2012c) Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. Environ Sci Technol 46(8):4666–4672CrossRefGoogle Scholar
  58. Shen G, Xue M, Wei S, Chen Y, Zhao Q, Li B, Wu H, Tao S (2013a) Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J Environ Sci (China) 25(9):1808–1816CrossRefGoogle Scholar
  59. Shen G, Wei S, Zhang Y, Wang B, Wang R, Shen H, Li W, Huang Y, Chen Y, Chen H, Tao S (2013b) Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Biomass Bionerg 55:141–147CrossRefGoogle Scholar
  60. Shen G, Tao S, Chen Y, Zhang Y, Wei S, Xue M, Wang B, Wang R, Lu Y, Li W, Shen H, Huang Y, Chen H (2013c) Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China. Environ Sci Technol 47:14485–14494CrossRefGoogle Scholar
  61. Sippula O, Hyto K, Tissari J, Raunemaa T, Jokiniemi J (2007) Effect of wood fuel on the emissions from a top-feed pellet stove. Energ Fuel 21:1151–1160CrossRefGoogle Scholar
  62. Sovadinová I, Bláha L, Janošek J, Hilscherová K, Giesy JP, Jones PD, Holoubek I (2006) Cytotoxicity and aryl hydrocarbon receptor–mediated activity of N-heterocyclic polycyclic aromatic hydrocarbons: structure–activity relationships. Environ Toxicol Chem 25(5):1291–1297Google Scholar
  63. Telmo C, Lousada J (2011) The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bionerg 35:1663–1667CrossRefGoogle Scholar
  64. Tissari J, Hytönen K, Lyyränen J, Jokiniemi J (2007) A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos Environ 41(37):8330–8344CrossRefGoogle Scholar
  65. Tissari J, Lyyränen J, Hytönen K, Sippula O, Tapper U, Frey A, Saarnio K, Pennanen AS, Hillamo R, Salonen RO, Hirvonen M-R, Jokiniemi J (2008) Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos Environ 42(34):7862–7873CrossRefGoogle Scholar
  66. Vicente ED, Duarte MA, Calvo AI, Nunes TF, Tarelho L, Alves CA (2015a) Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process Technol 131:182–192CrossRefGoogle Scholar
  67. Vicente ED, Duarte MA, Tarelho LAC, Nunes TFV, Amato F, Querol X, Colombi C, Gianelli V, Alves CA (2015b) Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmos Environ (in press)Google Scholar
  68. Vu B, Alves CA, Gonçalves C, Pio C, Gonçalves F, Pereira R (2012) Mutagenicity assessment of aerosols in emissions from wood combustion in Portugal. Environ Pollut 166:172–181CrossRefGoogle Scholar
  69. Waked A, Favez O, Alleman LY, Piot C, Petit J-E, Delaunay T, Verlinden E, Golly B, Besombes J-L, Jaffrezo J-L, Leoz-Garziandia E (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14(7):3325–3346CrossRefGoogle Scholar
  70. White KL, Kawabata TT, Ladics GS (1994) Mechanisms of polycyclic aromatic hydrocarbon immunotoxicity. In: Dean JH, Luster MI, Munson AE, Kimer I (eds) Immunotoxicology and immunopharmacology, 2nd edn. Raven, New York, pp 123–146Google Scholar
  71. Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol 20:149–183CrossRefGoogle Scholar
  72. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515CrossRefGoogle Scholar
  73. Zhang Y, Tao S, Shen H, Ma J (2009) Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. PNAS 106(50):21063–21067CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Estela Domingos Vicente
    • 1
  • Ana M. Vicente
    • 1
  • Benjamin A. Musa Bandowe
    • 2
  • Célia A. Alves
    • 1
  1. 1.Centre for Environmental and Marine Studies, Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations