Air Quality, Atmosphere & Health

, Volume 9, Issue 5, pp 447–460 | Cite as

Air quality plan for ozone: an urgent need for North Portugal

  • C. Borrego
  • A. Monteiro
  • H. Martins
  • J. Ferreira
  • A. P. Fernandes
  • S. Rafael
  • A. I. Miranda
  • M. Guevara
  • J. M. Baldasano


Each summer period, ozone concentrations surpass the legislation limits in the north of Portugal, more precisely at the Douro Norte monitoring station. To solve/mitigate this air pollution problem, and respond to the EU requirements, air quality plans were studied and designed. An air quality numerical modelling system was applied, with a source apportionment technique (to the most relevant ozone episodes) to identify the major source regions and the main activity sectors responsible for the ozone values at this site. Modelling results pointed out that the background values contribute with more than 50 % to the ozone concentration measured, followed by transport and residential sectors—the main anthropogenic activities. More regional and transboundary strategies are needed to reduce the background concentrations, besides local actions on road transport and residential combustion at urban regions (e.g., the Porto area).


Ozone Numerical modelling Source apportionment Air quality plans Mitigation measures 



The authors acknowledge the financial support of the Commission for Coordination and Development of North Region (CCDR-N) and also Fundação para a Ciência e a Tecnologia (FCT) for the PhD grants of A. Fernandes (SFRH/BD/86307/2012) and the post-doctoral grants of A. Monteiro (SFRH/BPD/63796/2009), J. Ferreira (SFRH/BPD/40620/2007) and H. Martins (SFRH/BPD/6874/2009). The authors would like to acknowledge the financial support of FEDER through the COMPETE Programme and the national funds from FCT—Science and Technology Portuguese Foundation—within project PEst-C/MAR/LA0017/2013 for the MAPLIA Project (PTDC/AAG-MAA/4077/2012)


  1. APA (Agência Portuguesa do Ambiente) (2011) Emissões de Poluentes Atmosféricos por Concelho 2009: gases acidificantes e eutrofizantes, precursores de ozono, partículas, metais pesados e gases com efeito de estufa. Agência Portuguesa do Ambiente (ed) Amadora, Novembro 2011Google Scholar
  2. APA (Agência Portuguesa do Ambiente) (2014a) Portuguese informative inventory report 1990–2012. Submitted under the unece convention on longrange transboundary air pollution. Agência Portuguesa do Ambiente (ed), Amadora, Março 2014Google Scholar
  3. APA (Portuguese Environmental Agency) (2014b) National strategy for air. ENAR 2014-2020. Synthesis Report. Available at: Accessed Nov 2014
  4. Baldasano JM, Guereca LP, López E, Gassó S, Jimenez-Guerrero P (2008) Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modelling Emission System (HERMES). Atmos Environ 42:7215–7233. doi: 10.1016/j.atmosenv.2008.07.026 CrossRefGoogle Scholar
  5. Borrego C, Carvalho A, Sá E, Sousa S, Coelho D, Lopes M, Monteiro A, Miranda AI (2011) Air quality plans for the northern region of Portugal: improving particulate matter and coping with legislation. In: Nejadkoorki F (ed) Advanced air pollution. InTech, RejikaGoogle Scholar
  6. Borrego C, Monteiro A, Sá E, Carvalho A, Coelho D, Dias D, Miranda AI (2012) Reducing NO2 pollution over urban areas: air quality modelling as a fundamental management tool. Water Air Soil Pollut 223:5307–5320. doi: 10.1007/s11270-012-1281-7 CrossRefGoogle Scholar
  7. Borrego C, Souto JA, Monteiro A, Dios M, Rodríguez A, Ferreira J, Saavedra S, Casares JJ, Miranda AI (2013) The role of transboundary air pollution over Galicia and North Portugal area. Environ Sci Pollut Res 20:2924–2936. doi: 10.1007/s11356-012-1201-9 CrossRefGoogle Scholar
  8. Carvalho A, Monteiro A, Ribeiro I, Tchepel O, Miranda AI, Borrego C, Saavedra S, Souto JA, Casares JJ (2010) High ozone levels in the Northeast of Portugal: analysis and characterization. Atmos Environ 44:1020–1031. doi: 10.1016/j.atmosenv.2009.12.020 CrossRefGoogle Scholar
  9. Draxler RR, Hess GD (1997) Description of the HYSPLIT 4 modeling system. NOAA Technical Memorandum ERL ARL-224, 24. NOAA, MarylandGoogle Scholar
  10. Draxler RR, Hess GD (1998) An overview of the HYSPLIT 4 modelling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308Google Scholar
  11. ECORYS (2014) Services to assess the reasons for non-compliance of ozone target value set by Directive 2008/50/EC and potential for air quality improvements in relation to ozone pollution. Final report. January 2014. ECORYS, the NetherlandsGoogle Scholar
  12. Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. doi: 10.5194/gmd-3-43-2010 CrossRefGoogle Scholar
  13. EEA (European Environment Agency) (2012) Air quality in Europe – 2012 report. EEA technical report No 4/2012. Copenhagen, 102 pages. ISBN 978-92-9213-328-3. doi:  10.2800/55823. Available at: Accessed Nov 2014
  14. EEA (European Environment Agency) (2014a) Air pollution by ozone across Europe during summer 2013. EEA technical report No 3/2014. Copenhagen, 54 pages. ISBN 978-92-9213-422-8. doi:  10.2800/11810. Available at: Accessed Oct 2014
  15. EEA (European Environment Agency) (2014b) Air quality in Europe – 2014 report. EEA technical report No. 5/2014. Copenhagen, 84 pages. ISBN 978-92-9213-490-7. doi:  10.2800/22847. Available at: Accessed Oct 2014
  16. Evtyugina MG, Nunes T, Pio CA, Costa CS (2006) Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast. Atmos Environ 33:6277–6293. doi: 10.1016/j.atmosenv.2006.05.046 CrossRefGoogle Scholar
  17. Evtyugina MG, Nunes T, Alves C, Marques MC (2009) Photochemical pollution in a rural mountainous area in the northeast of Portugal. Atmos Res 92(2):151–158. doi: 10.1016/j.atmosres.2008.09.006 CrossRefGoogle Scholar
  18. Fann N, Risley D (2013) The public health context for PM2.5 and ozone air quality trends. Air Qual Atmos Health 6(1):1–11CrossRefGoogle Scholar
  19. Gouveia C, Liberato MLR (2008) Local circulations over complex terrain in the Northeast of Portugal - modelling O3 transport. Geophys Res Abs 10 EGU2008-A-09628Google Scholar
  20. Guevara M, Martínez F, Arevalo G, Gasso S, Baldasano JM (2013) An improved system for modelling Spanish emissions: HERMESv2.0. Atmos Environ 81:209–221. doi: 10.1016/j.atmosenv.2013.08.053 CrossRefGoogle Scholar
  21. Dentener F, Keating T, Akimoto H (eds) (2011) HTAP (hemispheric transport of air pollution) (2010): part A: ozone and particulate matter air pollution studies Nr. 17. United Nations Publication, New York, 304 pGoogle Scholar
  22. Miranda AI, Silveira C, Ferreira J, Monteiro A, Lopes D, Relvas H, Borrego C, Roebeling P (2015) Current air quality plans in Europe designed to support air quality management policies. Atmos Pollut Res 6. doi:  10.5094/APR.2015.048
  23. Monteiro A, Miranda AI, Borrego C, Vautard R, Ferreira J, Perez AT (2007) Long-term assessment of particulate matter using CHIMERE model. Atmos Environ 41:7726–7738. doi: 10.1016/j.atmosenv.2007.06.008 CrossRefGoogle Scholar
  24. Monteiro A, Strunk A, Carvalho A, Tchepel O, Miranda AI, Borrego C, Saavedra S, Rodriguez A, Souto J, Casares J, Elbern H (2012) Investigating a high ozone episode in a rural mountain site. Environ Pollut 162:176–189. doi: 10.1016/j.envpol.2011.11.008 CrossRefGoogle Scholar
  25. Monteiro A, Ribeiro I, Tchepel O, Carvalho C, Martins H, Sá E, Ferreira J, Martins V, Galmarini S, Miranda AI, Borrego C (2013a) Ensemble techniques to improve air quality assessment: focus on O3 and PM. Environ Model Assess 19(3):249–257CrossRefGoogle Scholar
  26. Monteiro A, Ribeiro I, Tchepel O, Sá E, Ferreira J, Carvalho A, Martins V, Strunk A, Galmarini S, Elbern H, Schaap M, Builtjes P, Miranda AI, Borrego C (2013b) BIAS correction techniques to improve air quality ensemble predictions: focus on O3 and PM over Portugal. Environ Model Assess 18:533–546. doi: 10.1007/s10666-013-9358-2 CrossRefGoogle Scholar
  27. Morris RE, Yarwood G, Emery C, Koo B (2004) Development and application of the CAMx regional one-atmosphere model to treat ozone, particulate matter, visibility, air toxics and mercury. Presented in 97th annual conference and exhibition of the A&WMA, Indianapolis, 22–25 June 2004Google Scholar
  28. Pay MT, Valverde V, Baldasano JM, Kwok R, Napelenok S, Baker K (2014) Photochemical modeling to attributing source and source regions to ozone exceedances in Spain. 13th Annual CMAS Conference, Chapel Hill, NC, October 27–29, 2014. Available at: Accessed Sept 2014
  29. The Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08. The Royal Society, London, UKGoogle Scholar
  30. Saavedra S, Rodríguez A, Taboada JJ, Souto JA, Casares JJ (2012) Synoptic patterns and air mass transport during ozone episodes. Sci Total Environ 441:97–110CrossRefGoogle Scholar
  31. Seinfeld J, Pandis S (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New Jersey, 1232 ppGoogle Scholar
  32. Sillman S (1999) The relation between ozone, NOX and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845. doi: 10.1016/S1352-2310(98)00345-8 CrossRefGoogle Scholar
  33. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  34. Soret A, Guevara M, Baldasano JM (2014) The potential impacts of electric vehicles on air quality in the urban areas of Barcelona and Madrid (Spain). Atmos Environ 99:51–63. doi: 10.1016/j.atmosenv.2014.09.048 CrossRefGoogle Scholar
  35. EU (European Union) (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (OJ L 152, 11.6.2008, pp. 1–44). European Union, BrusselsGoogle Scholar
  36. Wilson RC, Fleming ZL, Monks PS, Clain G, Henne S, Konovalov IB, Szopa S, Menut L (2012) Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005. Atmos Chem Phys 12:437–454. doi: 10.5194/acp-12-437-2012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.CESAM, Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Earth Science DepartmentBarcelona Supercomputing Centre-Centro Nacional de Supercomputación (BSC-CNS)BarcelonaSpain
  3. 3.Environmental Modelling LaboratoryTechnical University of CataloniaBarcelonaSpain

Personalised recommendations