Air Quality, Atmosphere & Health

, Volume 8, Issue 5, pp 507–519 | Cite as

Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

  • Julie Richman FoxEmail author
  • David P. Cox
  • Bertram E. Drury
  • Timothy R. Gould
  • Terrance J. Kavanagh
  • Michael H. Paulsen
  • Lianne Sheppard
  • Christopher D. Simpson
  • James A. Stewart
  • Timothy V. Larson
  • Joel D. Kaufman


Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2 × 2 × 2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.


Air pollution Diesel exhaust Varying exposure conditions Physicochemical properties In vitro toxicity 







Count median diameter


Carbon monoxide


Carbon dioxide






Diesel exhaust


Diesel exhaust particulate


5,5’-Dithiobis-(2-nitrobenzoic acid)




Elemental carbon




Gasoline exhaust


Harvard personal environmental monitor




Mass median aerodynamic diameter


3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide






Nitric oxide


Oxides of nitrogen


Nitrogen dioxide


Organic carbon


Polycyclic aromatic hydrocarbon




Phosphate-buffered saline


Fine particulate matter




Standard deviation






Traffic-related air pollution




University of Washington



Funding for this study was provided by NIH/NIEHS Grants T32ES015459, T32ES007032, P50ES015915, and P30ES007033, and the Amgen Scholar’s Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Supplementary material

11869_2014_301_MOESM1_ESM.pdf (555 kb)
ESM 1 (PDF 555 kb)


  1. Ayres JG et al (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal Toxicol 20:75–99CrossRefGoogle Scholar
  2. Bai Y, Suzuki AK, Sagai M (2001) The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species. Free Radic Biol Med 30:555–562CrossRefGoogle Scholar
  3. Benbrahim-Tallaa L et al (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664. doi: 10.1016/S1470-2045(12)70280-2 CrossRefGoogle Scholar
  4. Birger N, Gould T, Stewart J, Miller MR, Larson T, Carlsten C (2011) The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: characterization and comparison to existing facilities. Inhal Toxicol 23:219–225. doi: 10.3109/08958378.2011.562256 CrossRefGoogle Scholar
  5. Biswas S, Verma V, Schauer JJ, Cassee FR, Cho AK, Sioutas C (2009) Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environ Sci Technol 43:3905–3912. doi: 10.1021/es9000592 CrossRefGoogle Scholar
  6. Brook RD et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378CrossRefGoogle Scholar
  7. Charrier JG, Anastasio C (2012) On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos Chem Phys Discuss 12:11317–11350. doi: 10.5194/acpd-12-11317-2012 CrossRefGoogle Scholar
  8. Cheung KL et al (2009) Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environ Sci Technol 43:6334–6340CrossRefGoogle Scholar
  9. Choi JH et al (2011) 5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion. Exp Mol Med 43:471–478. doi: 10.3858/emm.2011.43.8.053 CrossRefGoogle Scholar
  10. Cory G (2011) Scratch-wound assay methods in molecular biology (Clifton, NJ) 769:25–30 doi: 10.1007/978-1-61779-207-6_2
  11. Danielsen PH, Loft S, Moller P (2008) DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles Particle and fibre toxicology 5:6-8977-8975-8976 doi: 10.1186/1743-8977-5-6
  12. Doyle M, Sexton KG, Jeffries H, Jaspers I (2007) Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: the role of ozone and other photochemical degradation products. Chem Biol Interact 166:163–169CrossRefGoogle Scholar
  13. Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin YH, Jaspers I, Jeffries HE (2012a) Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM. Atmospheric Chem Phys Discuss: ACPD 12:5065–5105CrossRefGoogle Scholar
  14. Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin YH, Jaspers I, Jeffries HE (2012b) Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM. Atmos Chem Phys 12:12293–12312CrossRefGoogle Scholar
  15. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319CrossRefGoogle Scholar
  16. Fujitani Y, Hirano S, Kobayashi S, Tanabe K, Suzuki A, Furuyama A, Kobayashi T (2009) Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhal Toxicol 21:200–209. doi: 10.1080/08958370802339491 CrossRefGoogle Scholar
  17. Ghio AJ, Sobus JR, Pleil JD, Madden MC (2012) Controlled human exposures to diesel exhaust. Swiss Med Wkly 142:w13597. doi: 10.4414/smw.2012.13597 Google Scholar
  18. Gould T, Larson T, Stewart J, Kaufman JD, Slater D, McEwen N (2008) A controlled inhalation diesel exhaust exposure facility with dynamic feedback control of PM concentration. Inhal Toxicol 20:49–52CrossRefGoogle Scholar
  19. Health Effects Institute (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects vol 17. Boston, MAGoogle Scholar
  20. Hesterberg TW, Long CM, Bunn WB, Sax SN, Lapin CA, Valberg PA (2009) Non-cancer health effects of diesel exhaust: a critical assessment of recent human and animal toxicological literature. Crit Rev Toxicol 39:195–227. doi: 10.1080/10408440802220603 CrossRefGoogle Scholar
  21. Hirano S, Furuyama A, Koike E, Kobayashi T (2003) Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology 187:161–170. doi: 10.1016/S0300-483X(03)00053-2 CrossRefGoogle Scholar
  22. Hsu C-L, Wu Y-L, Tang G-J, Lee T-S, Kou YR (2009) Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: role of heme oxygenase-1. Pulm Pharmacol Ther 22:286–296. doi: 10.1016/j.pupt.2009.02.003 CrossRefGoogle Scholar
  23. Kang K et al (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 205:227–234. doi: 10.1016/j.toxlet.2011.05.1033 CrossRefGoogle Scholar
  24. Katz D, Ito E, Lau KS, Mocanu JD, Bastianutto C, Schimmer AD, Liu FF (2008) Increased efficiency for performing colony formation assays in 96-well plates: novel applications to combination therapies and high-throughput screening. Bio Technol 44:ix–xiv. doi: 10.2144/000112757; 10.2144/000112757 Google Scholar
  25. Kittelson DB et al (2008) Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas continuously regenerating trap. Environ Sci Technol 42:9276–9282CrossRefGoogle Scholar
  26. Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15:483–489CrossRefGoogle Scholar
  27. LaGier AJ, Manzo ND, Dye JA (2013) Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms. J Toxic Environ Health A 76:71–85. doi: 10.1080/15287394.2013.738169 CrossRefGoogle Scholar
  28. Laumbach R et al (2009) Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust. J Environ Monit: JEM 11:153–159CrossRefGoogle Scholar
  29. Li N, Hao M, Phalen RF, Hinds WC, Nel AE (2003a) Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol (Orlando, Fla) 109:250–265CrossRefGoogle Scholar
  30. Li N et al (2003b) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460CrossRefGoogle Scholar
  31. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. NatProtocols 2:329–333Google Scholar
  32. Lichtveld KM, Ebersviller SM, Sexton KG, Vizuete W, Jaspers I, Jeffries HE (2012) In vitro exposures in diesel exhaust atmospheres: resuspension of PM from filters versus direct deposition of PM from air. Environ Sci Technol 46:9062–9070. doi: 10.1021/es301431s; 10.1021/es301431s CrossRefGoogle Scholar
  33. Liu P-L, Chen Y-L, Chen Y-H, Lin S-J, Kou YR (2005) Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG. Am J Physiol Lung Cell Mol Physiol 289:L739–L749. doi: 10.1152/ajplung.00099.2005 CrossRefGoogle Scholar
  34. Liu Y-Y, Lin T-C, Wang Y-J, Ho W-L (2009) Carbonyl compounds and toxicity assessments of emissions from a diesel engine running on biodiesels. J Air Waste Manage Assoc 59:163–171. doi: 10.3155/1047-3289.59.2.163 CrossRefGoogle Scholar
  35. Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manage Assoc 51:809–847CrossRefGoogle Scholar
  36. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2013) The role of oxidative stress during inflammatory processes. Biol Chem. doi: 10.1515/hsz-2013-0241 Google Scholar
  37. Martin A, Clynes M (1993) Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology 11:49–58CrossRefGoogle Scholar
  38. Mattingly KA, Klinge CM (2012) Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch Toxicol 86:633–642. doi: 10.1007/s00204-011-0778-y CrossRefGoogle Scholar
  39. McConnachie LA et al (2013) Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology 7:181–191. doi: 10.3109/17435390.2011.648224 CrossRefGoogle Scholar
  40. McDonald JD, Barr EB, White RK (2004a) Design, characterization, and evaluation of a small-scale diesel exhaust exposure system. Aerosol Sci Technol 38:62–78. doi: 10.1080/02786820490247623 CrossRefGoogle Scholar
  41. McDonald JD, Harrod KS, Seagrave J, Seilkop SK, Mauderly JL (2004b) Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environ Health Perspect 112:1307–1312CrossRefGoogle Scholar
  42. McDonald JD, Campen MJ, Harrod KS, Seagrave J, Seilkop SK, Mauderly JL (2011) Engine-operating load influences diesel exhaust composition and cardiopulmonary and immune responses. Environ Health Perspect 119:1136–1141. doi: 10.1289/ehp.1003101 CrossRefGoogle Scholar
  43. Miller-Schulze JP et al (2010) Exposures to particulate air pollution and nitro-polycyclic aromatic hydrocarbons among taxi drivers in Shenyang. China Environ Sci Technol 44:216–221. doi: 10.1021/es802392u CrossRefGoogle Scholar
  44. Moller P, Folkmann JK, Forchhammer L, Brauner EV, Danielsen PH, Risom L, Loft S (2008) Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett 266:84–97. doi: 10.1016/j.canlet.2008.02.030 CrossRefGoogle Scholar
  45. Napierska D et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853. doi: 10.1002/smll.200800461 CrossRefGoogle Scholar
  46. Ntziachristos L, Froines JR, Cho AK, Sioutas C (2007) Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Particle Fibre Toxicol 4:5. doi: 10.1186/1743-8977-4-5 CrossRefGoogle Scholar
  47. Okayama Y, Kuwahara M, Suzuki AK, Tsubone H (2006) Role of Reactive Oxygen Species on Diesel Exhaust Particle-Induced Cytotoxicity in Rat. Cardiac Myocytes J Toxicol Environ Health, Part A 69:1699–1710. doi: 10.1080/15287390600631078 CrossRefGoogle Scholar
  48. Pan C-JG, Schmitz DA, Cho AK, Froines J, Fukuto JM (2004) Inherent redox properties of diesel exhaust particles: catalysis of the generation of reactive oxygen species by biological reductants. Toxicol Sci 81:225–232. doi: 10.1093/toxsci/kfh199 CrossRefGoogle Scholar
  49. Peplow PV, Chatterjee MP (2013) A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine 62:1–21. doi: 10.1016/j.cyto.2013.02.015 CrossRefGoogle Scholar
  50. Poss J et al (2013) Diesel exhaust particles impair endothelial progenitor cells, compromise endothelial integrity, reduce neoangiogenesis, and increase atherogenesis in mice. Cardiovasc Toxicol 13:290–300. doi: 10.1007/s12012-013-9208-0 CrossRefGoogle Scholar
  51. Robinson AL et al (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262. doi: 10.1126/science.1133061 CrossRefGoogle Scholar
  52. Rudell B, Sandstrom T, Hammarstrom U, Ledin ML, Horstedt P, Stjernberg N (1994) Evaluation of an exposure setup for studying effects of diesel exhaust in humans. Int Arch Occup Environ Health 66:77–83. doi: 10.1007/BF00383361 CrossRefGoogle Scholar
  53. Sawant AA et al (2008) Generation and characterization of diesel exhaust in a facility for controlled human exposures. J Air Waste Manage Assoc 58:829–837CrossRefGoogle Scholar
  54. Scheepers PT, Bos RP (1992) Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products. Int Arch Occup Environ Health 64:149–161CrossRefGoogle Scholar
  55. Schuetzle D, Perez JM (1983) Factors influencing the emissions of nitrated-polynuclear aromatic hydrocarbons (Nitro-PAH) from diesel engines. J Air Pollut Control Assoc 33:751–755. doi: 10.1080/00022470.1983.10465636 CrossRefGoogle Scholar
  56. Sexton KG, Jeffries HE, Jang M, Kamens RM, Doyle M, Voicu I, Jaspers I (2004) Photochemical products in urban mixtures enhance inflammatory responses in lung cells. Inhal Toxicol 16(Suppl 1):107–114. doi: 10.1080/08958370490443196 CrossRefGoogle Scholar
  57. Sharma M, Agarwal AK, Bharathi KVL (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028. doi: 10.1016/j.atmosenv.2004.12.047 CrossRefGoogle Scholar
  58. Shi JP, Mark D, Harrison RM (2000) Characterization of particles from a current technology heavy-duty diesel engine. Environ Sci Technol 34:748–755. doi: 10.1021/es990530z CrossRefGoogle Scholar
  59. Shinyashiki M et al (2009) Electrophilic and redox properties of diesel exhaust particles. Environ Res 109:239–244. doi: 10.1016/j.envres.2008.12.008 CrossRefGoogle Scholar
  60. Sjogren M, Li H, Banner C, Rafter J, Westerholm R, Rannug U (1996) Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels. Chem Res Toxicol 9:197. doi: 10.1021/tx950095w CrossRefGoogle Scholar
  61. Sobus JR, Pleil JD, Madden MC, Funk WE, Hubbard HF, Rappaport SM (2008) Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study. Environ SciTechnol 42:8822–8828. doi: 10.1021/es800813v CrossRefGoogle Scholar
  62. Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol (Clifton, NJ) 716:157–168. doi: 10.1007/978-1-61779-012-6_9 CrossRefGoogle Scholar
  63. Tau J, Novaes P, Matsuda M, Tasat DR, Saldiva PH, Berra A (2013) Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Invest Ophthalmol Vis Sci 54:4759–4765. doi: 10.1167/iovs.12-10541 CrossRefGoogle Scholar
  64. Totlandsdal AI et al (2012) Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicol Lett 208:262–268. doi: 10.1016/j.toxlet.2011.10.025 CrossRefGoogle Scholar
  65. Vedal S et al (2013) National Particle Component Toxicity (NPACT) Initiative report on cardiovascular effects. Health Effects Institute, BostonGoogle Scholar
  66. Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-kappaB, and MAPK pathways. Arch Toxicol 86:879–896. doi: 10.1007/s00204-012-0845-z CrossRefGoogle Scholar
  67. Weitkamp EA, Sage AM, Pierce JR, Donahue NM, Robinson AL (2007) Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ Sci Technol 41:6969–6975. doi: 10.1021/es070193r CrossRefGoogle Scholar
  68. Weldy CS, Wilkerson HW, Larson TV, Stewart JA, Kavanagh TJ (2011) Diesel particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes. Toxicol vitro: an Int J Publ Assoc BIBRA 25:2064–2073. doi: 10.1016/j.tiv.2011.08.008 CrossRefGoogle Scholar
  69. World Health Organization (2006) Air Quality Guidelines: Global Update 2005. Druckpartner Moser, GermanyGoogle Scholar
  70. Yin F et al (2013) Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol 33:1153–1161. doi: 10.1161/ATVBAHA.112.300552 CrossRefGoogle Scholar
  71. You Y et al (2012) Anti-atherosclerotic function of Astragali Radix extract: downregulation of adhesion molecules in vitro and in vivo. BMC Complement Altern Med 12:54CrossRefGoogle Scholar
  72. Zhang J, McCreanor JE, Cullinan P, Chung K, Ohman-Strickland P, Han I-K JL, Nieuwenhuijsen MJ (2009) Health effects of real-world exposure to diesel exhaust in persons with asthma vol 138. Health Effects Institute, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Julie Richman Fox
    • 1
    Email author
  • David P. Cox
    • 1
  • Bertram E. Drury
    • 2
  • Timothy R. Gould
    • 3
  • Terrance J. Kavanagh
    • 1
  • Michael H. Paulsen
    • 1
  • Lianne Sheppard
    • 1
    • 4
  • Christopher D. Simpson
    • 1
  • James A. Stewart
    • 1
  • Timothy V. Larson
    • 1
    • 3
  • Joel D. Kaufman
    • 1
  1. 1.Department of Environmental & Occupational Health Sciences University of WashingtonSeattleUSA
  2. 2.School of Medicine, University of MissouriColumbiaUSA
  3. 3.Department of Civil & Environmental EngineeringUniversity of WashingtonSeattleUSA
  4. 4.Department of Biostatistics University of WashingtonSeattleUSA

Personalised recommendations