Air Quality, Atmosphere & Health

, Volume 8, Issue 4, pp 367–378

Temporal variation of PM10 and metal concentrations in Tampico, Mexico

  • R. M. Flores-Rangel
  • P. F. Rodríguez-Espinosa
  • J. A. Montes de Oca-Valero
  • V. Mugica-Álvarez
  • M. E. Ortiz-Romero-Vargas
  • M. Navarrete-López
  • H. J. Dorantes-Rosales
  • S. S. Morales-García
Article

Abstract

Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V, and Zn in particulate matter (PM)10 ambient air samples were determined for the urban zone of Tampico, Mexico every 6 days during 2004. A Wedding and Associates PM10 high-volume sampler was used to collect the particles on quartz and glass fiber filters. A Thermo Jarrel Ash inductively coupled plasma-optical emission spectrometer (ICP-OES) was used to identify and quantify metals in PM10 according to the USEPA-IO 3.1 method. A scanning electron microscope with an energy dispersive spectrometer (SEM-EDS) was used to analyze the elemental composition, size, and morphology of atmospheric particles. Principal component factor analysis (PCFA) was used to study the sources of PM10 and metals. PM10 and Pb concentrations in Tampico did not exceed the Mexican standard value of 120 and 1.5 μg m−3 in 24 h, respectively. PM10 concentrations ranged from 12 to 47 μg m−3. The results for Cd, Cr, and Cu are associated to the presence of an industrial source near the sampling site. V and Zn and likely Pb and Ni are related to a refinery. Fe and Ti are associated to natural sources, whereas Cu, Fe, Ni, Pb, and Zn are associated to the storage and transportation of minerals near the sampling zone. Mn is associated to a ferromanganese manufacturing industry and to the refinery. The SEM-EDS micrographs show porous spherical particles rich in V and Ni and smooth spherical particles rich in C and O.

Keywords

Air quality Factor analysis Mexico PM10 Source identification Toxic metals 

References

  1. Aldape F, Flores MJ, Díaz RV, Hernández-Méndez B, Montoya ZJM, Blanco EE, Fuentes AF, Torres-Martínez LM (1999a) PIXE analysis of airborne particulate matter from Monterrey, México. A first survey. Nucl Instrum Methods Phys Res Sect B 150:439–444. doi:10.1016/S0168-583X(98)01046-5 CrossRefGoogle Scholar
  2. Aldape F, Hernández-Méndez B, Flores MJ (1999b) Manganese survey in airborne particulate matter from a mining area at Hidalgo State, Mexico. Nucl Instrum Methods Phys Res Sect B 150:363–369. doi:10.1016/S0168-583X(98)01030-1 CrossRefGoogle Scholar
  3. Amato F, Pandolfi M, Moreno T, Furger M, Pey J, Alastuey A, Bukowiecki N, Prevot ASH, Baltensperger U, Querol X (2011) Sources and variability of inhalable road dust particles in three European cities. Atmos Environ 45:6777–6787. doi:10.1016/j.atmosenv.2011.06.003 CrossRefGoogle Scholar
  4. Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26:1251–1263. doi:10.1002/esp.263 CrossRefGoogle Scholar
  5. Baeza-Squiban A, Bonvallot V, Boland S, Marano F (1999) Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol Toxicol 15:375–380. doi:10.1023/A:1007653900063 CrossRefGoogle Scholar
  6. Breysse P, Delfino R, Dominici F, Elder AP, Frampton M, Froines J, Geyh A, Godleski J, Gold D, Hopke P, Koutrakis P, Li N, Oberdörster G, Pinkerton K, Samet J, Utell M, Wexler A (2013) US EPA particulate matter research centers: summary of research results for 2005–2011. Air Qual Atmos Health 6:333–355. doi:10.1007/s11869-012-0181-8 CrossRefGoogle Scholar
  7. Chow JC, Watson JG, Edgerton SA, Vega E (2002a) Chemical composition of PM2.5 and PM10 in México City during winter 1997. Sci Total Environ 287:177–201. doi:10.1016/S0048-9697(01)00982-2 CrossRefGoogle Scholar
  8. Chow JC, Watson JG, Edgerton SA, Vega E, Ortiz E (2002b) Spatial differences in outdoor PM10 mass and aerosol composition in México City. J Air Waste Manag Assoc 52:423–434. doi:10.1080/10473289.2002.10470791 CrossRefGoogle Scholar
  9. Chow JC, Watson JG, Kuhns H, Etyemezian V, Lowenthal DH, Crow D, Kohl SD, Engelbrecht JP, Green MC (2004) Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54:185–208. doi:10.1016/j.chemosphere.2003.07.004 CrossRefGoogle Scholar
  10. Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y (2006) Adverse health effects of outdoor air pollutants. Environ Int 32:815–830. doi:10.1016/j.envint.2006.03.012 CrossRefGoogle Scholar
  11. Diario Oficial de la Federacion (2005) Modified mexican standard NOM-025-SSA1-1993. Diario Oficial de la Federacion September 26, 2005Google Scholar
  12. Ergenekon P, Ulutaş K (2014) Heavy metal content of total suspended air particles in the havily industrialized town of Gebze, Turkey. B Environ Contam Tox 92:90–95. doi:10.1007/s00128-013-1148-7 CrossRefGoogle Scholar
  13. European Union (2014) Air quality standards. http://ec.europa.eu/environment/air/quality/standards.htm. Accessed August 4 2014
  14. Flores-Rangel R, Rodríguez-Espinosa P, de Oca-Valero JM, Mugica-Alvarez V, Ortiz-Romero-Vargas M, Navarrete-Lopez M, Dorantes-Rosales H (2007a) Metal content in air samples collected in an urban zone in Tampico, México: a first survey. Hum Ecol Risk Assess 13:1359–1372. doi:10.1080/10807030701655608 CrossRefGoogle Scholar
  15. Flores-Rangel RM, Rodriguez-Espinosa PF, Montes de Oca-Valero JA, Mugica-Alvarez V, Ortiz-Romero-Vargas E (2007b) Geographic information system applied to urban aerosols in Altamira, México Proceedings of the 100th Annual Meeting Conference and Exhibition of the Air and Waste Management Association, Pittsburgh, Pa. vol Paper #554. p 554Google Scholar
  16. Karar K, Gupta A, Kumar A, Biswas AK (2006) Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM10 particulates at the two sites of Kolkata, India. Environ Monit Assess 120:347–360. doi:10.1007/s10661-005-9067-7 CrossRefGoogle Scholar
  17. Martinez-Carrillo M, Solis C, Andrade E, Issac-Olive K, Beltran-Hernandez R, Medina-Moreno S, Martinez-Resendiz G, Ramirez-Reyes A, Lucho-Constantino C, Del Razo L (2010) Aerosol composition from Tlaxcoapan, Hidalgo in central Mexico. Rev Mex Fís S 56:62–66Google Scholar
  18. Minguillón MC, Campos AA, Cárdenas B, Blanco S, Molina LT, Querol X (2014) Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, México, during Cal-Mex campaign. Atmos Environ 88:320–329. doi:10.1016/j.atmosenv.2013.09.032 CrossRefGoogle Scholar
  19. Miranda J, Zepeda F, Galindo I (2004) The possible influence of volcanic emissions on atmospheric aerosols in the city of Colima, México. Environ Pollut 127:271–279. doi:10.1016/S0269-7491(03)00265-3 CrossRefGoogle Scholar
  20. Miranda J, Barrera V, Espinosa A, Galindo O, Meinguer J (2005) PIXE analysis of atmospheric aerosols in México City. X-Ray Spectrom 34:315–319. doi:10.1002/xrs.823 CrossRefGoogle Scholar
  21. Morales-García S, Rodríguez-Espinosa P, Jonathan M, Navarrete-López M, Herrera-García M, Muñoz-Sevilla N (2014) Characterization of As and trace metals embedded in PM10 particles in Puebla City, México. Environ Monit Assess 186:55–67. doi:10.1007/s10661-013-3355-4 CrossRefGoogle Scholar
  22. Mugica V, Ortiz E (2005) Elemental composition of airborne particles: analytical techniques and application in decision-making for air quality management. In: Palomar M (ed) Applications of analytical chemistry in environmental research. Research Signpost, Trivandrum, pp 219–260Google Scholar
  23. Mugica V, Maubert M, Torres M, Muñoz J, Rico E (2002) Temporal and spatial variations of metal content in TSP and PM10 in México City during 1996–1998. J Aerosol Sci 33:91–102. doi:10.1016/S0021-8502(01)00151-3 CrossRefGoogle Scholar
  24. Mugica V, Mugica F, Torres M, Figueroa J (2008) PM2.5 emission elemental composition from diverse combustion sources in the Metropolitan Area of México City. Sci World J 8:275–286. doi:10.1100/tsw.2008.41 CrossRefGoogle Scholar
  25. Pina AA, Villaseñor GT, Fernández MM, Luszczewski Kudra A, Leyva Ramos R (2000) Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, México. Atmos Environ 34:4103–4112. doi:10.1016/S1352-2310(99)00526-9 CrossRefGoogle Scholar
  26. Pope CA III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–742. doi:10.1080/10473289.2006.10464485 CrossRefGoogle Scholar
  27. Querol X, Pey J, Minguillón MC, Pérez N, Alastuey A, Viana M, Moreno T, Bernabé RM, Blanco S, Cárdenas B, Vega E, Sosa G, Escalona S, Ruiz H, Artíñano B (2008) PM speciation and sources in México during the MILAGRO-2006 Campaign. Atmos Chem Phys 8:111–128. doi:10.5194/acp-8-111-2008 CrossRefGoogle Scholar
  28. Servicio Meteorologico Nacional (2006) Resources for information on meteorological data in Tampico. Available at: http://www.puertodetampico.com.mx/new_site/clima.html
  29. Thomas S, Morawska L (2002) Size-selected particles in an urban atmosphere of Brisbane, Australia. Atmos Environ 36:4277–4288. doi:10.1016/S1352-2310(02)00345-X CrossRefGoogle Scholar
  30. Tsiouri V, Kakosimos K, Kumar P (2014) Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—a review. Air Qual Atmos Health:1–14. doi:10.1007/s11869-014-0277-4
  31. United States Environmental Protection Agency (1999) Compendium of methods for the determination of inorganic compounds in ambient air. Compendium method IO-3.1: Selection, Preparation and Extraction of filter material. Cincinnati, OHGoogle Scholar
  32. Vahter M, Åkesson A, Lidén C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95. doi:10.1016/j.envres.2006.08.003 CrossRefGoogle Scholar
  33. Vega E, Ruiz H, Martinez-Villa G, Sosa G, Gonzalez-Avalos E, Reyes E, Garcia J (2007) Fine and coarse particulate matter chemical characterization in a heavily industrialized city in central México during winter 2003. J Air Waste Manag Assoc 57:620–633. doi:10.3155/1047-3289.57.5.620 CrossRefGoogle Scholar
  34. Watson J, Turpin B, Chow J (2001) The measurement process: precision, accuracy, and validity. In: Cohen B, McCammon C Jr (eds) Air sampling instruments for evaluation of atmospheric contaminants. American Conference of Government Industrial Hygienists, Cincinnati, pp 201–216Google Scholar
  35. World Health Organization (2006) Health risks of particulate matter from long-range transboundary air pollution. Eur Cent for Environ and Health, BonnGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. M. Flores-Rangel
    • 1
  • P. F. Rodríguez-Espinosa
    • 2
  • J. A. Montes de Oca-Valero
    • 3
  • V. Mugica-Álvarez
    • 4
  • M. E. Ortiz-Romero-Vargas
    • 4
  • M. Navarrete-López
    • 5
  • H. J. Dorantes-Rosales
    • 6
  • S. S. Morales-García
    • 2
    • 6
  1. 1.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico NacionalAltamiraMexico
  2. 2.Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico NacionalMexicoMexico
  3. 3.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico NacionalQueretaroMexico
  4. 4.Universidad Autónoma Metropolitana Unidad Azcapotzalco, Área de Química AplicadaReynosaMexico
  5. 5.Laboratorio Central de Investigación de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalMexicoMexico
  6. 6.Departamento de MetalurgiaEscuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico NacionalLindavistaMexico

Personalised recommendations