Air Quality, Atmosphere & Health

, Volume 6, Issue 2, pp 517–525 | Cite as

Impact of biomass burning and weather conditions on children’s health in a city of Western Amazon region

  • Cleber Nascimento do Carmo
  • Mariane Branco Alves
  • Sandra de Souza Hacon
Article

Abstract

During the dry season in Brazilian Amazon, the population experiences severe smoke haze pollution in a region called “Arc of Devastation.” The increased pollution loading in the Amazonian atmosphere due to biomass burning emissions contributes significantly to global emissions of gases and particulate matter with important ecosystem and health impacts on local and regional populations. The aim of this study is to assess the lag structure among biomass burning air pollution exposure and environmental factors on children’s health in the municipality of Rio Branco, southwestern region of the Brazilian Amazon. In this paper, Poisson regressions via transfer function models were used and compared to polynomial distributed lag models to analyze the lagged and cumulative impacts of fine particulate matter and humidity exposure on daily demand of children’s hospital admissions due to respiratory causes from January 2004 to December 2009. Transfer function models presented better results. Increases of 10 μg/m3 in particles ≤ 2.5 μm/m3 aerodynamic diameter (PM2.5) exposure were associated with 5.6 % (95 % CI, 3.64−7.31) increase in hospital admissions due to respiratory diseases at lag 2. Effects of PM2.5 were acute and slight “harvesting” was found. Results demonstrate the adverse impact of biomass air pollution on health in the population, highlighting the need for public efforts to reduce this source of air pollution.

Keywords

Biomass burning Brazilian Amazon Children Health effects Time series 

References

  1. ACRE. Governo do Estado do Acre (2006) Programa estadual de zoneamento ecológico-econômico do Acre fase II. Documento síntese–escala 1:250.000. Rio Branco, SEMAGoogle Scholar
  2. Almon S (1965) The distributed lag between capital appropriations and expenditures. Econometrica 33:178–196CrossRefGoogle Scholar
  3. Alves MB, Gamerman D, Ferreira MAR (2010) Transfer functions in dynamic generalized linear models. Stat Model 10:3–40CrossRefGoogle Scholar
  4. Artaxo P, Gatti LV, Leal AMC, Longo KM, Freitas SR, Lara LL, Pauliquevis TM, Procópio AS, Rizzo LV (2005) Química atmosférica na Amazônia: A floresta e as emissões de queimadas controlando a composição da atmosfera amazônica. Acta Amazon 35(2):185–198CrossRefGoogle Scholar
  5. Artaxo P, Martins JV, Yamasoe MA, Procópio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AMC (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res 107(D20):8081. doi: 10.1029/2001JD000666 CrossRefGoogle Scholar
  6. Artaxo P, Rizzo LV, Paixao M, Lucca S, Oliveira PH, Lara LL, Wiedemann KT, Andreae MO, Holben B, Schafer J, Correia AL, Pauliquevism TM (2009) Aerosol particles in Amazonia: Their composition, role in the radiation balance, cloud formation and nutrient cycles. In: Keller M, Bustamante M, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, DCGoogle Scholar
  7. Bates D (1995) The effects of air pollution on children. Environ Health Perspect 103(Suppl 6):49–53CrossRefGoogle Scholar
  8. Barnett AG, Williams GM, Schwartz J, Neller AH, Best TL, Petroeschevsky AL, Simpson RW (2005) Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med 171:272–1278CrossRefGoogle Scholar
  9. Box GEP, Jenkins GM (1976) Time series analysis forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  10. Brauer M (1999) Health impacts of biomass air pollution. In: Goh KT, Schwela D, Goldammer JG (eds) Health guidelines for vegetation fire events: background papers. World Health Organisation, Geneva, pp 186–254Google Scholar
  11. Brown IF, Schroeder W, Setzer A, Maldonado MLR, Pantoja N, Duarte A, Marengo J (2006) Monitoring fires in Southwestern. Amazonia Rain Forest 87:253–264Google Scholar
  12. Cakmak S, Dales R, Vidal C (2007) Air pollution and mortality in Chile: susceptibility among the elderly. Environ Health Perspect 115:524–527CrossRefGoogle Scholar
  13. Carmo CN, Hacon S, Longo KM, Freitas S, Ignotti E, Ponce de Leon A, Artaxo P (2010) Associação entre material particulado de queimadas e doenças respiratórias na região sul da Amazônia brasileira. Rev Panam Salud Publica 27:10–16CrossRefGoogle Scholar
  14. Costa AS, Souza Jr CM (2005) Comparação entre imagens LANDSAT ETM + e MODIS/TERRA para detecção de incrementos de desmatamento na região do Baixo Acre. Rev. Bras. Cartogr 57/02Google Scholar
  15. Dennekamp M, Abramson MJ (2011) The effects of bushfire smoke on respiratory health. Respirology 16:198–209CrossRefGoogle Scholar
  16. Duarte AF (2005) Variabilidade e tendência das chuvas em Rio Branco, Acre. Brasil Rev Bras Meteorol 20(1):37–42Google Scholar
  17. Duarte AF, Mascarenhas MDM (2007) Manifestações do bioclima do Acre sobre a saúde humana no contexto socioeconômico da Amazônia. Amazônia: Ciência & Desenvolvimento 3(5):páginaGoogle Scholar
  18. Englert N (2004) Fine particles and human health: a review of epidemiological studies. Toxicol Lett 149:235–42CrossRefGoogle Scholar
  19. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:680–688CrossRefGoogle Scholar
  20. Gouveia N, Freitas CU, Martins LC, Marcílio IO (2006) Hospitalizações por causas respiratórias e cardiovasculares associadas à contaminação atmosférica no Município de São Paulo. Brasil Cad Saude Publica 22(12):2669–2677Google Scholar
  21. Graham B, Guyon P, Artaxo P et al (2003) Composition and diurnal variability of the natural Amazonian aerosol. J Geophys Res 108(D24):16ppGoogle Scholar
  22. Gwynn R, Burnett R, Thurston G (2000) A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York. Region Environ Health Perspect 108:125–133CrossRefGoogle Scholar
  23. Hajat S, Anderson H, Atkinson R, Haines A (2002) Effects of air pollution on general practitioner consultations for upper respiratory diseases in London. Occup Environ Med 59:294–299CrossRefGoogle Scholar
  24. Ignotti E, Hacon SS, Junger WL, Mourão D, Longo K, Freitas S, Artaxo P, Ponce de Leon ACM (2010) Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach. Cad Saúde Pública 26(4):747–761CrossRefGoogle Scholar
  25. Instituto Brasileiro de Geografia e Estatística—IBGE (2009) Uso da terra e a gestão do território no Estado do Acre. IBGE, Brasília. (Relatório técnico)Google Scholar
  26. Kleeman MJ, Schauer JJ, Cass GR (1999) Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling and cigarettes. Environ Sci Technol 33(20):3516–3523CrossRefGoogle Scholar
  27. Longo KM, Freitas SR, Setzer A, Prins E, Artaxo P, Andreae MO (2007) The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS), Part 2: model sensitivity to the biomass burning inventories. Atmos Chem Phys Discuss 7:8571–8595CrossRefGoogle Scholar
  28. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio OG, Oliveira R, Camargo H, Alves L, Brown IF (2008) The drought of Amazonia in 2005. J. Climate Número, PáginaGoogle Scholar
  29. Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol-Bracero OL, McMurry PH, Pauliquevis T, Poschl U, Prather KA, Roberts GC, Saleska SR, Silva-Dias MA, Spracklen DV, Swietlicki E, Trebs I (2010) Sources and properties of Amazonian aerosols particles, 2010. Rev Geophys 48:RG2002. doi: 10.1029/2008RG000280 CrossRefGoogle Scholar
  30. Martins LD, Martins JA, Freitas ED, Mazzoli CR, Gonçalves FLT, Ynoue RY, Hallak R, Albuquerque TTA, Andrade MF (2009) Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study. Air Qual Atmos Health. doi: 10.1007/s11869-009-0048-9
  31. Mascarenhas MDM, Vieira LC, Lanzieri TM, Leal APPR, Duarte AF, Hatch DL (2008) Poluição atmosférica devido à queima de biomassa florestal e atendimentos de emergência por doença respiratória em Rio Branco, Brasil–setembro, 2005. J Bras Pneumol 34:42–46CrossRefGoogle Scholar
  32. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19:67–106CrossRefGoogle Scholar
  33. O’Neill M, Loomis D, Borja Aburto V, Gold D, Hertz-Picciotto I, Castillejos M (2004) Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy? J Expo Anal Environ Epidemiol 14:429–439CrossRefGoogle Scholar
  34. Ponce de Leon A, Anderson HR, Bland JM, Strachan DP, Bower J (1996) Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987–88 and 1991–92. J Epidemiol Community Health 33(Suppl 1):S63–S70CrossRefGoogle Scholar
  35. Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108:713–723CrossRefGoogle Scholar
  36. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–42CrossRefGoogle Scholar
  37. Reisen F, Brown SK (2006) Implications for community health from exposure to bushfire air toxics. Environ Chem 3:235–43CrossRefGoogle Scholar
  38. Schwartz J (1994) Total suspended particulate matter and daily mortality in Cincinnati. Ohio Environ Health Perspect 102(2):186–189CrossRefGoogle Scholar
  39. Schwartz J (2000) The distributed lag between air pollution and daily deaths. Epidemiol 11(3):320–326CrossRefGoogle Scholar
  40. SISAM. Ministério da Saúde e Ministério da Ciência e Tecnologia (2009) Sistema de informações ambientais: Ferramenta de apoio à vigilância em saúde ambiental. http://sisam.cptec.inpe.br/msaude/info.consulta.logic. Accessed 10 April 2010
  41. Wong TW, Tam W, Yu ITS, Wun YT, Wong AHS, Wong CM (2006) Association between air pollution and general practitioner visits for respiratory diseases in Hong Kong. Thorax 61:585–591. doi: 10.1136/thx.2005.051730 CrossRefGoogle Scholar
  42. World Health Organization—WHO (2005) Air quality guidelines: global update. WHO, GenebraGoogle Scholar
  43. Vasconcelos SS, Brown IF, Fearnside PM (2009) Focos de calor sul da Amazônia: indicadores de mudanças no uso da terra. In: Epiphanio JCN, Galvão LS (eds) Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil 2009. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, pp 6353–6360Google Scholar
  44. Yokelson RJ, Christian TJ, Karl TG, Guenther A (2008) The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmos Chem Phys 8:3509–3527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Cleber Nascimento do Carmo
    • 1
  • Mariane Branco Alves
    • 2
  • Sandra de Souza Hacon
    • 1
  1. 1.Fundação Oswaldo Cruz and Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations