Air Quality, Atmosphere & Health

, Volume 6, Issue 2, pp 431–444 | Cite as

Effects of fresh and aged traffic-related particles on breathing pattern, cellular responses, and oxidative stress

  • Edgar A. DiazEmail author
  • Yeonseung Chung
  • Denise P. Lamoureux
  • Vasileios Papapostolou
  • Joy Lawrence
  • Mark S. Long
  • Vicente Mazzaro
  • Helena Buonfiglio
  • Rodrigo Sato
  • Petros Koutrakis
  • John J. Godleski


Air pollution is comprised of a complex mixture of gaseous and particulate pollutants emitted from multiple sources. During transport in the atmosphere, emissions undergo photochemical reactions, which may change their toxicity. Toxicological and epidemiological studies have linked vehicular emissions to respiratory and cardiovascular health effects. The aim of this study was to investigate the toxicity of primary and secondary traffic particles. Male Sprague–Dawley rats were exposed to either filtered air (control group) or one of three types of atmospheres: fresh primary particles from a major traffic tunnel plenum (P); secondary organic aerosol formed from photochemical oxidation of primary tunnel gases after filtration of primary particles (SOA); or photochemically aged primary particles plus secondary organic aerosols (P + SOA). In each exposure, 80–90 % of pollutant gases were removed using a non-selective denuder. Animals were exposed for 5 h per day, with varying number of days of exposure. Outcomes included: breathing pattern, broncho-alveolar lavage (BAL), complete blood count, and in vivo chemiluminescence (IVCL). Consistent mass concentration (approximately 50 μg/m3) was achieved for all exposures. Respiratory data showed many changes with each exposure type. All exposures produced decreases in tidal volume, minute volume, inspiratory and expiratory flows. There were mild inflammatory changes in BAL, with increased neutrophils for the SOA and P + SOA exposures and lymphocytes for the P and P + SOA exposure, with no changes in any test exposure for total protein, β-NAG or IVCL. All exposures produced changes compared to filtered air. Exposures containing particles (P and P + SOA) had stronger effects than SOA.


Traffic emissions Particle matter Respiratory changes Breathing pattern Oxidative stress Lung inflammation 


Declaration of interest

This publication was made possible by the USEPA Clean Air Research Center grant RD 83479801, the US Environmental Protection Agency Center for Particle Health Effects at the Harvard School of Public Health (grant RD8232416), and the Harvard NIEHS Center for Environmental Health (grant ES00002). Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication.


  1. Amdur MO (1989) Health effects of air pollutants: sulfuric acid, the old and the new. Environ Health Perspect 81:109–113, discussion 121-102CrossRefGoogle Scholar
  2. Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, Tjonneland A, Overvad K, Raaschou-Nielsen O (2011) Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med 183(4):455–461. doi: 10.1164/rccm.201006-0937OC CrossRefGoogle Scholar
  3. Batalha JR, Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, Koutrakis P, Godleski JJ (2002) Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ Health Perspect 110(12):1191–1197CrossRefGoogle Scholar
  4. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378. doi: 10.1161/CIR.0b013e3181dbece1 CrossRefGoogle Scholar
  5. Clarke RW, Catalano PJ, Koutrakis P, Murthy GG, Sioutas C, Paulauskis J, Coull B, Ferguson S, Godleski JJ (1999) Urban air particulate inhalation alters pulmonary function and induces pulmonary inflammation in a rodent model of chronic bronchitis. Inhal Toxicol 11(8):637–656CrossRefGoogle Scholar
  6. Clarke RW, Coull B, Reinisch U, Catalano P, Killingsworth CR, Koutrakis P, Kavouras I, Murthy GG, Lawrence J, Lovett E, Wolfson JM, Verrier RL, Godleski JJ (2000) Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect 108(12):1179–1187CrossRefGoogle Scholar
  7. Cotes JE, Chinn DJ, Miller M (2006) Lung function in relation to general anesthesia and artificial ventilation. In: Khan M (ed) Lung function: physiology, measurement and application in medicine, Sixth Edition ednth edn. Blackwell Publishing, Hoboken, pp 593–603CrossRefGoogle Scholar
  8. Coull BA, Wellenius GA, Gonzalez-Flecha B, Diaz E, Koutrakis P, Godleski JJ (2011) The toxicological evaluation of realistic emissions of source aerosols study: statistical methods. Inhal Toxicol 23(Suppl 2):31–41. doi: 10.3109/08958378.2010.566291 CrossRefGoogle Scholar
  9. Diaz EA, Lemos M, Coull B, Long MS, Rohr AC, Ruiz P, Gupta T, Kang CM, Godleski JJ (2011) Toxicological evaluation of realistic emission source aerosols (TERESA)—power plant studies: assessment of breathing pattern. Inhal Toxicol 23(Suppl 2):42–59. doi: 10.3109/08958378.2010.578169 CrossRefGoogle Scholar
  10. Diaz EA, Chung Y, Papapostolou V, Lawrence J, Long MS, Hatakeyama V, Gomes B, Calil Y, Sato R, Koutrakis P, Godleski JJ (2012) Effects of fresh and aged vehicular exhaust emissions on breathing pattern and cellular responses—pilot single vehicle study. Inhal Toxicol 24(5):288–295. doi: 10.3109/08958378.2012.668572 CrossRefGoogle Scholar
  11. Dockery DW, Pope CA 3rd (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132. doi: 10.1146/annurev.pu.15.050194.000543 CrossRefGoogle Scholar
  12. Dolinay T, Szilasi M, Liu M, Choi AM (2004) Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 170(6):613–620. doi: 10.1164/rccm.200401-023OC CrossRefGoogle Scholar
  13. Gerlofs-Nijland ME, Boere AJ, Leseman DL, Dormans JA, Sandstrom T, Salonen RO, van Bree L, Cassee FR (2005) Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats. Part Fibre Toxicol 2(1):2. doi: 10.1186/1743-8977-2-2 CrossRefGoogle Scholar
  14. Gianetti J, Bevilacqua S, De Caterina R (2002) Inhaled nitric oxide: more than a selective pulmonary vasodilator. Eur J Clin Invest 32(8):628–635CrossRefGoogle Scholar
  15. Godleski JJ, Verrier RL, Koutrakis P, Catalano P, Coull B, Reinisch U, Lovett EG, Lawrence J, Murthy GG, Wolfson JM, Clarke RW, Nearing BD, Killingsworth C (2000) Mechanisms of morbidity and mortality from exposure to ambient air particles. Res Rep Health Eff Inst 91:5–88, discussion 89-103Google Scholar
  16. Godleski JJ, Diaz EA, Lemos M, Long M, Ruiz P, Gupta T, Kang CM, Coull B (2011a) Toxicological evaluation of realistic emission source aerosols (TERESA)—power plant studies: assessment of cellular responses. Inhal Toxicol 23(Suppl 2):60–74. doi: 10.3109/08958378.2010.563804 CrossRefGoogle Scholar
  17. Godleski JJ, Rohr AC, Kang CM, Diaz EA, Ruiz PA, Koutrakis P (2011b) Toxicological evaluation of realistic emission source aerosols (TERESA): introduction and overview. Inhal Toxicol 23(Suppl 2):1–10. doi: 10.3109/08958378.2010.568019 CrossRefGoogle Scholar
  18. Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110(8):749–755CrossRefGoogle Scholar
  19. Holgate ST, Sandstrom T, Frew AJ, Stenfors N, Nordenhall C, Salvi S, Blomberg A, Helleday R, Soderberg M (2003) Health effects of acute exposure to air pollution. Part I: healthy and asthmatic subjects exposed to diesel exhaust. Research report 112:1–30, discussion 51-67Google Scholar
  20. Kang CM, Gupta T, Ruiz PA, Wolfson JM, Ferguson ST, Lawrence JE, Rohr AC, Godleski J, Koutrakis P (2011) Aged particles derived from emissions of coal-fired power plants: the TERESA field results. Inhal Toxicol 23(Suppl 2):11–30. doi: 10.3109/08958371003728040 CrossRefGoogle Scholar
  21. Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449. doi: 10.1146/annurev.pharmtox.46.120604.141053 CrossRefGoogle Scholar
  22. Kodavanti UP, Thomas R, Ledbetter AD, Schladweiler MC, Shannahan JH, Wallenborn JG, Lund AK, Campen MJ, Butler EO, Gottipolu RR, Nyska A, Richards JE, Andrews D, Jaskot RH, McKee J, Kotha SR, Patel RB, Parinandi NL (2011) Vascular and cardiac impairments in rats inhaling ozone and diesel exhaust particles. Environ Health Perspect 119(3):312–318. doi: 10.1289/ehp.1002386 CrossRefGoogle Scholar
  23. Laden F, Neas LM, Dockery DW, Schwartz J (2000) Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108(10):941–947CrossRefGoogle Scholar
  24. Lamoureux DP, Diaz EA, Chung YS, Coull B, Papapostolou V, Lawrence J, Sato R, Oliveira JP, Godleski JJ (2012) Effect of fresh and aged vehicular particulate emissions on blood pressure in normal adult male rats. Air Quality, Atmosphere and Health. doi: 10.1007/s11869-012-0177-4
  25. Lemos M, Diaz EA, Gupta T, Kang CM, Ruiz P, Coull BA, Godleski JJ, Gonzalez-Flecha B (2011) Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols. Inhal Toxicol 23(Suppl 2):75–83. doi: 10.3109/08958378.2011.601433 CrossRefGoogle Scholar
  26. Lippmann M, Chen LC (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39(10):865–913. doi: 10.3109/10408440903300080 CrossRefGoogle Scholar
  27. Liu Y, Sarnat JA, Kilaru V, Jacob DJ, Koutrakis P (2005) Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environ Sci Technol 39(9):3269–3278CrossRefGoogle Scholar
  28. McDonald JD, Reed MD, Campen MJ, Barrett EG, Seagrave J, Mauderly JL (2007) Health effects of inhaled gasoline engine emissions. Inhal Toxicol 19(Suppl 1):107–116. doi: 10.1080/08958370701495279 CrossRefGoogle Scholar
  29. Migliore E, Berti G, Galassi C, Pearce N, Forastiere F, Calabrese R, Armenio L, Biggeri A, Bisanti L, Bugiani M, Cadum E, Chellini E, Dell'orco V, Giannella G, Sestini P, Corbo G, Pistelli R, Viegi G, Ciccone G (2009) Respiratory symptoms in children living near busy roads and their relationship to vehicular traffic: results of an Italian multicenter study (SIDRIA 2). Environ Health 8:27. doi: 10.1186/1476-069X-8-27 CrossRefGoogle Scholar
  30. Morse D, Choi AM (2008) Inhaled CO in the treatment of acute lung injury. Am J Physiol Lung Cell Mol Physiol 294(4):L642–L643. doi: 10.1152/ajplung.00054.2008 CrossRefGoogle Scholar
  31. Nikolov MC, Coull BA, Catalano PJ, Diaz E, Godleski JJ (2008) Statistical methods to evaluate health effects associated with major sources of air pollution: a case study of breathing patterns during exposure to concentrated Boston air particles. J R Stat Soc Ser C 57:357–378CrossRefGoogle Scholar
  32. Papapostolou V, Lawrence JE, Diaz EA, Wolfson JM, Ferguson ST, Long MS, Godleski JJ, Koutrakis P (2011a) Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions. Inhal Toxicol 23(8):495–505. doi: 10.3109/08958378.2011.587034 CrossRefGoogle Scholar
  33. Papapostolou V, Lawrence JE, Ferguson ST, Wolfson JM, Koutrakis P (2011b) Development and evaluation of a countercurrent parallel-plate membrane diffusion denuder for the removal of gas-phase compounds from vehicular emissions. Inhal Toxicol 23(13):853–862. doi: 10.3109/08958378.2011.619590 CrossRefGoogle Scholar
  34. Papapostolou V, Lawrence JE, Ferguson ST, Wolfson JM, Diaz EA, Godleski JJ, Koutrakis P (2012) Development and characterization of an exposure generation system to investigate the health effects of particles from fresh and aged traffic emissions. Air Qual Atmos Health. doi: 10.1007/s11869-012-0178-3 Google Scholar
  35. Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Kc D, Prakash S, Ross JM, Levy D, Kinney PL (2010) Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Perspect 118(9):1338–1343. doi: 10.1289/ehp.0901499 CrossRefGoogle Scholar
  36. Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, Lowel H (2004) Exposure to traffic and the onset of myocardial infarction. N Engl J Med 351(17):1721–1730. doi: 10.1056/NEJMoa040203 CrossRefGoogle Scholar
  37. Quan C, Sun Q, Lippmann M, Chen LC (2010) Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol 22(9):738–753. doi: 10.3109/08958371003728057 CrossRefGoogle Scholar
  38. Reed MD, Barrett EG, Campen MJ, Divine KK, Gigliotti AP, McDonald JD, Seagrave JC, Mauderly JL, Seilkop SK, Swenberg JA (2008) Health effects of subchronic inhalation exposure to gasoline engine exhaust. Inhal Toxicol 20(13):1125–1143. doi: 10.1080/08958370802368722 CrossRefGoogle Scholar
  39. Ris C (2007) U.S. EPA health assessment for diesel engine exhaust: a review. Inhal Toxicol 19 Suppl 1:229–239. doi: 10.1080/08958370701497960 CrossRefGoogle Scholar
  40. Ryter SW, Morse D, Choi AM (2004) Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004 (230):RE6. doi: 10.1126/stke.2302004re6
  41. Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, Frew A (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159(3):702–709CrossRefGoogle Scholar
  42. Schwartz J (2001) Is there harvesting in the association of airborne particles with daily deaths and hospital admissions? Epidemiology 12(1):55–61CrossRefGoogle Scholar
  43. Sethi JM, Choi AM, Calhoun WJ, Ameredes BT (2008) Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice. Respir Res 9:45. doi: 10.1186/1465-9921-9-45 CrossRefGoogle Scholar
  44. Smith PE, Edwards RH, Calverley PM (1989) Ventilation and breathing pattern during sleep in Duchenne muscular dystrophy. Chest 96(6):1346–1351CrossRefGoogle Scholar
  45. Smith KR, Kim S, Recendez JJ, Teague SV, Menache MG, Grubbs DE, Sioutas C, Pinkerton KE (2003) Airborne particles of the california central valley alter the lungs of healthy adult rats. Environ Health Perspect 111(7):902–908, discussion A408-909CrossRefGoogle Scholar
  46. Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandstrom T, Dahlen SE (2001) Health effects of diesel exhaust emissions. Eur Respir J 17(4):733–746CrossRefGoogle Scholar
  47. Wellenius GA, Batalha JR, Diaz EA, Lawrence J, Coull BA, Katz T, Verrier RL, Godleski JJ (2004) Cardiac effects of carbon monoxide and ambient particles in a rat model of myocardial infarction. Toxicol Sci 80(2):367–376. doi: 10.1093/toxsci/kfh161 CrossRefGoogle Scholar
  48. Zhang JJ, McCreanor JE, Cullinan P, Chung KF, Ohman-Strickland P, Han IK, Jarup L, Nieuwenhuijsen MJ (2009) Health effects of real-world exposure to diesel exhaust in persons with asthma. Research report 138:5–109, discussion 111-123Google Scholar
  49. Zhang C, Peng H, Zhasng JT (2010) Two samples tests for functional data. Commun Stat-Theory Methods 39(4):559–578. doi: 10.1080/03610920902755839 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edgar A. Diaz
    • 1
    Email author
  • Yeonseung Chung
    • 2
    • 3
  • Denise P. Lamoureux
    • 1
  • Vasileios Papapostolou
    • 1
  • Joy Lawrence
    • 1
  • Mark S. Long
    • 1
  • Vicente Mazzaro
    • 1
  • Helena Buonfiglio
    • 1
  • Rodrigo Sato
    • 1
  • Petros Koutrakis
    • 1
  • John J. Godleski
    • 1
  1. 1.Department of Environmental HealthHarvard School of Public HealthBostonUSA
  2. 2.Department of BiostatisticsHarvard School of Public HealthBostonUSA
  3. 3.Department of Mathematical SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations