Air Quality, Atmosphere & Health

, Volume 6, Issue 1, pp 259–276 | Cite as

Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India

  • Dhananjay K. Deshmukh
  • Manas K. Deb
  • Stelyus L. Mkoma
Article

Abstract

In this study, size-segregated particulate matter samples were collected in Raipur, India from July 2009 to June 2010 by using eight-stage cascade impactor sampler. The annual average concentrations and associated standard deviation of PM10, PM2.5–10, PM2.5, and PM1 were 270.5 ± 105.5, 119.6 ± 44.6, 150.9 ± 78.6, and 72.5 ± 39.0 μg/m3, respectively. The PM10 and PM2.5 levels at Raipur, India were well above the annual National Ambient Air Quality Standards of India of 60 and 40 μg/m3 for PM10 and PM2.5, respectively. Particulate matter concentrations in winter were higher than those in summer and monsoon. Increased energy use and dry atmospheric conditions contributed to increasing particulate matter concentrations in winter, while increased rainfall precipitation contributed to decreasing particulate matter levels in the monsoon. Spearman correlation analysis between PM10 and PM2.5 revealed high correlation coefficients (r = 0.85), implying that PM10 and PM2.5 may have the same source of regions or that they are influenced by the same local conditions. The highest monthly values of air quality index occur in winter and spring, while they are reduced in summer and monsoon. The analysis showed that 25.0% of the days was unhealthy for sensitive people, 47.4% was unhealthy or very unhealthy, while 4.1% was considered as hazardous. A comparison of the exceedance factors indicated that PM10 and PM2.5 was the most significant polluting agent, causing maximum deterioration in the ambient air quality of Raipur, India.

Keywords

Particulate matters Mass concentration Size distribution Seasonal variation Correlation analysis Air quality index 

References

  1. Akyuz M, Cabuk H (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak Turkey. J Hazard Mater 170:13–21CrossRefGoogle Scholar
  2. Badarinath KVS, Latha KM, Chand TRK, Reddy RR, Gopal KR, Reddy LS, Narasimhulu SK, Kumar KR (2007a) Black carbon aerosol and gaseous pollutant in an urban area in North India during fog period. Atmos Res 85:209–216CrossRefGoogle Scholar
  3. Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis HD (2007b) Case study of a dust storm over Hyderabad area, India: its impact on solar radiation using satellite data and ground measurement. Sci Total Environ 384:316–332CrossRefGoogle Scholar
  4. Badarinath KVS, Kharol SK, Reddy RR, Rama Gopal K, Narasimhulu K, Siva Sankara Reddy L, Raghavendra Kumar K (2009) Black carbon aerosol mass concentration variation in urban and rural environments of India: a case study. Atmos Sci Lett 10:29–33CrossRefGoogle Scholar
  5. Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26:49–54CrossRefGoogle Scholar
  6. Bartzokas A, Kassomenos P, Petrakis M, Celessides C (2004) The effect of meteorological and pollution parameters on the frequency of hospital admissions for cardiovascular and respiratory problems in Athens. Indoor Built Environ 13:271–275CrossRefGoogle Scholar
  7. Bayraktar H, Turalioglu FS, Tuncel G (2010) Average mass concentrations of TSP, PM10 and PM2.5 in Erzurum urban atmosphere, Turkey. Stoch Environ Res Risk Assess 24:57–65CrossRefGoogle Scholar
  8. Begum BA, Biswas SK, Hopke PK (2008) Assessment of trends and present ambient concentrations of PM2.2 and PM10 in Dhaka, Bangladesh. Air Qual Atmos Health 1:125–133CrossRefGoogle Scholar
  9. Bhaskar BV, Mehta VM (2010) Atmospheric particulate pollutants and their relationship with meteorology in Ahmadabad. Aerosol Air Qual Res 10:301–315Google Scholar
  10. Bhaskar BV, Rajashekhar RJV, Muthusubramanian P, Kesarkar AP (2008) Measurement and modeling of irrespirable particulate matters (PM10) and lead pollution over Madurai, India. Air Qual Atmos Health 1:45–55CrossRefGoogle Scholar
  11. Bhaskar BV, Rajasekhar RJV, Muthusubramanian P, Kesarkar AP (2010) Ionic and heavy metal composition of respirable particulate in Madurai, India. Environ Monit Assess 164:323–336CrossRefGoogle Scholar
  12. Bishoi B, Prakas A, Jain VK (2009) A comparison study of air quality index based on factor analysis and US-EPA method for an urban environment. Aerosol Air Qual Res 9:1–17Google Scholar
  13. Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Review 51:137–154CrossRefGoogle Scholar
  14. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, Morishita M, Marsik FJ, Kamal AS, Kaciroti N, Harkema J, Corey P, Silverman F, Gold DR, Wellenius G, Mittleman MA, Rajagopalan S, Brooky JR (2009) Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54:659–667CrossRefGoogle Scholar
  15. Chakra ORA, Joyeux M, Nerriere E, Strub MP, Zmirou-Navier D (2007) Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study. Chemosphere 66:1375–1381CrossRefGoogle Scholar
  16. Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37:649–660CrossRefGoogle Scholar
  17. Chan Y, Kwok WS (2001) Roadside suspended particulates at heavily trafficked urban site of Hong Kong: seasonal variation and dependence on meteorological conditions. Atmos Environ 35:3177–3182CrossRefGoogle Scholar
  18. Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42:1–42CrossRefGoogle Scholar
  19. Das M, Maiti SK, Mukhopadhyay U (2006) Distribution of PM2.5 and PM10–2.5 in PM10 fractions in ambient air due to vehicular pollution in Kolkata megacity. Environ Monit Assess 122:111–123CrossRefGoogle Scholar
  20. Deshmukh DK, Deb MK, Verma SK (2010a) Distribution patters of coarse, fine and ultrafine atmospheric aerosol particulate matters in major cities of Chhattisgarh. Indian J Environ Prot 30:184–197Google Scholar
  21. Deshmukh DK, Deb MK, Tsai YI, Mkoma SL (2010b) Atmospheric ionic species in PM2.5 and PM1 aerosols in the ambient air of eastern central India. J Atmos Chem 66:81–100CrossRefGoogle Scholar
  22. Deshmukh DK, Deb MK, Suzuki Y, Kouvarakis GN (2011a) Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Qual Atmos Health. doi:10.1007/s11869-011-0149-0
  23. Deshmukh DK, Deb MK, Tsai YI, Mkoma SL (2011b) Water soluble ions in PM2.5 and PM1 aerosols in Durg city, Chhattisgarh, India. Aerosol Air Qual Res 11:696–708Google Scholar
  24. Fang GC, Wu YS, Chang CN, Ho TT (2006) A study of polycyclic aromatic hydrocarbons and source identification by methods of diagnostic ratio and principal component analysis at Taichung chemical Harbor near Taiwan Strait. Chemosphere 64:1233–1242CrossRefGoogle Scholar
  25. Fuentes M (2009) Statistical issue in health impact assessment at the state and local levels. Air Qual Atmos Health 2:47–55CrossRefGoogle Scholar
  26. Godoy L, Godoy JLA, Roldao L (2009) Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos Environ 43:2366–2374CrossRefGoogle Scholar
  27. Gupta AK, Patil RS, Gupta SK (2004) A statistical analysis of particulate data sets for Jawaharlal Nehru port and surrounding harbor region in India. Environ Monit Assess 95:295–309CrossRefGoogle Scholar
  28. Hauck H, Berner A, Frischer T, Gomiseck B, Kundi M, Neuberger M, Puxbaum H, Preining O (2004) AUPHEP—Austrian Project on Health Effects of Particulates—general overview. Atmos Environ 38:3905–3915CrossRefGoogle Scholar
  29. Hien PD, Bac VT, Tham HC, Nhan DD, Vinh LD (2002) Influence of meteorological conditions on PM2.5 and PM2.5–10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos Environ 36:3473–3484CrossRefGoogle Scholar
  30. Ho KF, Lee SC, Chan CK, Yu JC, Chow JC, Yao X (2003) Characterization of chemical species in PM2.5 and PM10 aerosol in Hong Kong. Atmos Environ 37:31–39CrossRefGoogle Scholar
  31. Karar K, Gupta AK (2006) Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmos Res 81:36–53CrossRefGoogle Scholar
  32. Katiyar SC, Khathing DT, Dwivedi KK (2002) Assessment of breathing level ambient air quality of Shilong: Part 1: total suspended particulate loadings. Indian J Environ Prot 22:115–122Google Scholar
  33. Kendall M, Pala K, Ucakli S, Gucer S (2011) Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey. Air Qual Atmos Health 4:235–242CrossRefGoogle Scholar
  34. Khan MF, Shirasuna Y, Hirano K, Masunaga S (2010) Characterization of PM2.5, PM2.5–10 and PM>10 in ambient air, Yokohama, Japan. Atmos Res 96:159–172CrossRefGoogle Scholar
  35. Kothai P, Saradhi IV, Pratibha P, Hopke PK, Pandit GG, Puranik VD (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual Res 8:423–436Google Scholar
  36. Kouyoumdjian H, Saliba NA (2006) Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acid and the depletion of chloride. Atmos Chem Phys 6:1865–1877CrossRefGoogle Scholar
  37. Kulshrestha A, Bisht DS, Masih J, Massey D, Tiwari S, Taneja A (2009) Chemical characterization of water-soluble aerosols in different residential environments of semi arid region of India. J Atmos Chem 62:121–138CrossRefGoogle Scholar
  38. Lal R, Kendall M, Ito K, Thurston GD (2004) Estimation of historical annual PM2.5 exposure for health effects assessment. Atmos Environ 38:5217–5226CrossRefGoogle Scholar
  39. Larissi IK, Koukouletsos KV, Moustris KP, Antoniou A, Paliatsos AG (2010) PM10 concentration levels in the greater Athens area, Greece. Fresen Environ Bull 19:226–231Google Scholar
  40. Lianou M, Chalbot M, Kavouras IG, Kotronarou A, Karakatsani A, Analytis A, Katsouyanni K, Puustinen A, Hameri K, Vallius M, Pekkanen J, Meddings C, Harrison RM, Ayres JG, Brick HT, Kos G, Meliefste K, Hartog JD, Hock G (2011) Temporal variations of atmospheric aerosols in four European urban areas. Environ Sci Pollut Res 18:1202–1212CrossRefGoogle Scholar
  41. Lin JJ (2002) Characterization of water-soluble ion species in urban ambient particles. Environ Int 28:55–61CrossRefGoogle Scholar
  42. Lin JJ, Lee LC (2004) Characterization of the concentrations and distribution of urban submicron (PM1) aerosol particles. Atmos Environ 38:469–475CrossRefGoogle Scholar
  43. Marcazzan G, Vaccaro S, Valli G, Vecchi R (2001) Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35:4639–4650CrossRefGoogle Scholar
  44. Mauli PC, Mohan SV, Reddy J (2006) Chemical composition of atmospheric aerosols (PM10) at a semi-arid urban site: influence of terrestrial sources. Environ Monit Assess 117:291–305CrossRefGoogle Scholar
  45. Mitra AP, Sharma C (2002) Indian aerosol: present status. Chemosphere 49:1175–1190CrossRefGoogle Scholar
  46. Mohan M, Kandya A (2007) An analysis of the annual and seasonal trends of air quality index of Delhi. Environ Monit Assess 131:267–277CrossRefGoogle Scholar
  47. Mori I, Nishikawa M, Tanimura T, Quan H (2003) Change in the size distribution and chemical composition of Kosa (Asian dust) aerosol during long-range transport. Atmos Environ 37:4253–4263CrossRefGoogle Scholar
  48. Nastos T, Athanasios G, Michael B, Eleftheria SR, Kostas NP (2010) Outdoor particulate matter and childhood asthma admission in Athens, Greece: a time-series study. Environ Health 9:1–9CrossRefGoogle Scholar
  49. National Ambient Air Quality Standards (NAAQS) (2009) Central Pollution Control Board, India. Gazette notification, New Delhi, 18 November 2009Google Scholar
  50. Oanh NTK, Upadhyay N, Zhuang YH, Hao ZP, Murthy DVS, Lestari P, Villarin JT, Chengchua K, Co XH, Dung NT, Lindgren ES (2006) Particulate air pollution in six Asian cities: spatial and temporal distributions, and associated sources. Atmos Environ 40:3367–3380CrossRefGoogle Scholar
  51. Paliastos AG, Priftis KN, Ziomas IC, Panagiotopoulou-Gartagani P, Nikolaou-Panagiotou A, Tapratzi-Potamianou P, Zachariadi-Xypolita A, Nicolaidou P, Saxoni-Papageorgiou P (2006) Association between ambient air pollution and childhood asthma in Athens, Greece. Fresen Environ Bull 15:614–618Google Scholar
  52. Pathank BG, Kalita G, Bhuyan K, Bhuyan PK, Krishna Moorthy K (2010) Aerosol temporal characteristics and impact on shortwave radiative forcing at a location in the northeast of India. J Geophys Res. doi:10.1029/2009JD013462
  53. Perez N, Pey J, Querol X, Alastuey A, Lopez JM, Viana M (2008) Partitioning of major and trace components in PM10, PM2.5, PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691CrossRefGoogle Scholar
  54. Peteraki ST, Asimakopoulos DN, Maggos Th, Vasilakos Ch (2010) Particulate matter levels in a suburban Mediterranean area: analysis of a 53–month long experimental campaign. J Hazard Mater 182:801–811CrossRefGoogle Scholar
  55. Pozzi R, De Berardis B, Paoletti L, Guastadisegni C (2005) Winter urban air particles from Rome (Italy): effects on the monocytic–macrophagic RAW264.7 cell line. Environ Res 99:344–354CrossRefGoogle Scholar
  56. Raja S, Biswas KS, Husain L, Hopke PK (2010) Source apportionment of the atmospheric aerosol in Lahor, Pakistan. Water Air Soil Pollut 208:43–57CrossRefGoogle Scholar
  57. Ramachandran S, Kedia S (2010) Black carbon aerosols over an urban region: radiative forcing and climate impact. J Geophys Res. doi:10.1029/2009JD013560
  58. Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmadabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada and USA. J Geophys Res. doi:10.1029/2006JD007488
  59. Rashki A, Rautenbach CJ, Eriksson PG, Kaskaoutis DG, Gupta P (2011) Temporal changes of particulate concentration in the ambient air over the city of Zahedan. Iran Air Qual Atmos Health. doi:10.1007/s11869-011-0152-5
  60. Ravindra K, Mor S, Kamyotra JS, Kaushik CP (2003) Variation in spatial patterns of criteria pollution before and during initial rain of monsoon. Environ Monit Assess 87:145–153CrossRefGoogle Scholar
  61. Rehwagen M, Muller A, Massolo L, Herbarth A, Ronco A (2005) Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ 348:199–210CrossRefGoogle Scholar
  62. Rinaldi M, Embblico L, Decesari S, Fuzzi S, Facchini MC, Librando V (2007) Chemical characterization and source apportionment of size-segregated aerosols collected at an urban site in Sicily. Water Air Soil Pollut 185:311–321CrossRefGoogle Scholar
  63. Rodriguez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmos Environ 35:2433–2447CrossRefGoogle Scholar
  64. Sahu SK, Pandit GG, Sadasivan S (2004) Precipitation scavenging of polycyclic aromatic hydrocarbons in Mumbai, India. Sci Total Environ 318:245–249CrossRefGoogle Scholar
  65. Salam A, Hossain T, Siddiqui NA, Alam AMS (2008) Characteristics of atmospheric trace gases, particulate matter pollution in Dhaka, Bangladesh. Air Qual Atmos Health 1:101–109CrossRefGoogle Scholar
  66. Sharma M, Maloo S (2005) Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ 39:6015–6026CrossRefGoogle Scholar
  67. Shin HH, Burnett RT, Stieb DM, Jessiman B (2009) Measuring health accountability of air quality management. Air Qual Atmos Health 2:11–20CrossRefGoogle Scholar
  68. Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res. doi:10.1029/2004JD004966
  69. Singh R, Sharma BS, Chalka SN (2009) Seasonal air quality profile of inorganic ionic composition of PM10 near Taj Mahal in Agra, India. Environ Monit Assess. doi:10.1007/s10661-00901103-6
  70. Spindler G, Muller E, Bruggemann E, Gnauk T, Hermann H (2004) Long term size-segregated characterization of PM10, PM2.5 and PM1 at the IfT research station Melpitz downwind of Leipzig (Germany) using high and low volume filter samplers. Atmos Environ 38:5333–5347CrossRefGoogle Scholar
  71. Srivastava RK, Sarkar R (2006) Air quality index: a brief review. Indian J Environ Prot 26:344–347Google Scholar
  72. Sun Y, Zhuang G, Yun H, Zhang X, Guo J (2004) Characteristics and sources of 2002 super dust storm in Beijing. China Sci Bull 49:698–705Google Scholar
  73. Tiwari S, Srivastava MK, Bisht DS (2008) Chemical characteristics of water soluble components of fine particulate matter, PM2.5 at Delhi, India. Earth Sci India 1:92–107Google Scholar
  74. Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209CrossRefGoogle Scholar
  75. Triantafyllou AG, Evagelopoulos V, Zoras S (2006) Design of a web-based information system for ambient environmental data. J Environ Manage 80:230–236CrossRefGoogle Scholar
  76. Tsai YI (2005) Atmospheric visibility trends in an urban area in Taiwan 1961–2003. Atmos Environ 39:5555–5567CrossRefGoogle Scholar
  77. Tsai YI, Cheng MT (2004) Characterization of chemical species in atmospheric PM10 aerosols in a metropolitan basin. Chemosphere 54:1171–1181CrossRefGoogle Scholar
  78. Vassilakos Ch, St P, Veros D, Maggos Th, Michopoulos J, Saraga D, Helmis CG (2007) Temporal determination of heavy metals in PM2.5 aerosol in a suburban site of Athens, Greece. J Atmos Chem 57:1–17CrossRefGoogle Scholar
  79. Vega E, Eidels S, Ruiz H, Lopez-Veneroni D, Sosa G, Gonzalez E, Gasca J, Mora V, Reyes E, Sanchez-Reyna G, Villasenor R, Chow JC, Watson JG, Edgerton SA (2010) Particulate air pollution in Mexico City: a detailed view. Aerosol Air Qual Res 10:193–211Google Scholar
  80. Wang G, Wang H, Yu Y, Gao S, Feng J, Gao S, Wang L (2003) Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmos Environ 37:2893–2902CrossRefGoogle Scholar
  81. Wang Y, Zhuang G, Tang A, Yuan H, Sun Y, Chen Sh, Zheng A (2005) The ion chemistry and source of PM2.5 aerosol in Beijing. Atmos Environ 39:3771–3784CrossRefGoogle Scholar
  82. Wang W, Chai F, Zhang K, Wang SL, Chen YZ, Wang XZ, Yang YQ (2008) Study on ambient air quality in Beijing for the summer 2008 Olympic Games. Air Qual Atmos Health 1:31–36CrossRefGoogle Scholar
  83. Wilson WE, Suh HH (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiological studies. Air Waste Manage Assoc 47:1238–1249CrossRefGoogle Scholar
  84. Wilson AM, Salloway JC, Wake CP, Kelly T (2004) Air pollution and demand for hospital services: a review. Environ Int 30:1109–1118CrossRefGoogle Scholar
  85. Wojas B, Almquist C (2007) Mass concentrations and chemical species speciation of PM2.5 and PM10 and total suspended solids in Oxford, Ohio and comparison with those from metropolitan sites in the Greater Cincinnati region. Atmos Environ 41:9064–9078CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dhananjay K. Deshmukh
    • 1
  • Manas K. Deb
    • 1
  • Stelyus L. Mkoma
    • 2
  1. 1.School of Studies in ChemistryPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of Physical Sciences, Faculty of ScienceSokoine University of Agriculture (SUA)MorogoroTanzania

Personalised recommendations