Air Quality, Atmosphere & Health

, Volume 4, Issue 1, pp 65–78 | Cite as

Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles

  • Nazanin R. Yacobi
  • Farnoosh Fazllolahi
  • Yong Ho Kim
  • Arnold Sipos
  • Zea Borok
  • Kwang-Jin Kim
  • Edward D. Crandall


Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.


Epithelial transport Nanoparticle trafficking Pulmonary toxicity Lung injury Ultrafine particles Air pollution 


  1. Adson A, Raub TJ, Burton PS et al (1994) Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83:1529–1536Google Scholar
  2. Anglin EJ, Cheng L, Freeman WR et al (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277Google Scholar
  3. Baker GL, Gupta A, Clark ML et al (2008) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101:122–131Google Scholar
  4. Bakry R, Vallant RM, Najam-ul-Haq M et al (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649Google Scholar
  5. Bakshi MS, Zhao L, Smith R et al (2008) Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J 94:855–868Google Scholar
  6. Beckett WS, Chalupa DF, Pauly-Brown A et al (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 171:1129–1135Google Scholar
  7. Berry JP, Arnoux B, Stanislas G et al (1977) A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine 27:354–357Google Scholar
  8. Borm P, Klaessig FC, Landry TD et al (2006a) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32Google Scholar
  9. Borm PJ, Robbins D, Haubold S et al (2006b) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11Google Scholar
  10. Bosi S, Feruglio L, Da Ros T et al (2004) Hemolytic effects of water-soluble fullerene derivatives. J Med Chem 47:6711–6715Google Scholar
  11. Bottini M, D’Annibale F, Magrini A et al (2007) Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine 2:227–233Google Scholar
  12. Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247Google Scholar
  13. Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381Google Scholar
  14. Camps X, Hirsch A (1997) Efficient cyclopropanation of C60 from malonates. JCS Perkin Trans 1:1595–1596Google Scholar
  15. Card JW, Zeldin DC, Bonner JC et al (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:L400–L411Google Scholar
  16. Cheek JM, Evans MJ, Crandall ED (1989a) Type I cell-like morphology in tight alveolar epithelial monolayers. Exp Cell Res 184:375–387Google Scholar
  17. Cheek JM, Kim KJ, Crandall ED (1989b) Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am J Physiol 256:C688–C693Google Scholar
  18. Cho SJ, Maysinger D, Jain M et al (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980Google Scholar
  19. Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170Google Scholar
  20. Cohen MS, Stern JM, Vanni AJ et al (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt) 8:397–403Google Scholar
  21. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44Google Scholar
  22. Deguchi S, Yamazaki T, Mukai SA et al (2007) Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem Res Toxicol 20:854–858Google Scholar
  23. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Materials 16:961–969Google Scholar
  24. Dick CA, Brown DM, Donaldson K et al (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52Google Scholar
  25. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902Google Scholar
  26. Donaldson K, Tran L, Jimenez LA et al (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10Google Scholar
  27. Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22Google Scholar
  28. Eichmann SL, Anekal SG, Bevan MA (2008) Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24:714–721Google Scholar
  29. Erogbogbo F, Yong KT, Roy I et al (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878Google Scholar
  30. Evans SA, Al-Mosawi A, Adams RA et al (2006) Inflammation, edema, and peripheral blood changes in lung-compromised rats after instillation with combustion-derived and manufactured nanoparticles. Exp Lung Res 32:363–378Google Scholar
  31. Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542Google Scholar
  32. Frampton MW (2001) Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect 109(Suppl 4):529–532Google Scholar
  33. Frampton MW, Utell MJ, Zareba W et al. (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst (126):1–47; discussion 49–63Google Scholar
  34. Franklin NM, Rogers NJ, Apte SC et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490Google Scholar
  35. Furuyama A, Kanno S, Kobayashi T et al (2009) Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol 83:429–437Google Scholar
  36. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2Google Scholar
  37. Geiser M, Rothen-Rutishauser B, Kapp N et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560Google Scholar
  38. Geiser M, Casaulta M, Kupferschmid B et al (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376Google Scholar
  39. Geys J, Nemmar A, Verbeken E et al (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116:1607–1613Google Scholar
  40. Gharbi N, Pressac M, Hadchouel M et al (2005) C60 fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585Google Scholar
  41. Gojova A, Guo B, Kota RS et al (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409Google Scholar
  42. Gold DR, Litonjua A, Schwartz J et al (2000) Ambient pollution and heart rate variability. Circulation 101:1267–1273Google Scholar
  43. Goldberg MS, Bailar JC III, Burnett RT et al (2000) Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: a time-series study in Montreal, Quebec. Res Rep Health Eff Inst 97:7–113, discussion 115–120Google Scholar
  44. Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900Google Scholar
  45. Gurr JR, Wang AS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73Google Scholar
  46. Hamoir J, Nemmar A, Halloy D et al (2003) Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol Appl Pharmacol 190:278–285Google Scholar
  47. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172Google Scholar
  48. Heckel K, Kiefmann R, Dorger M et al (2004) Colloidal gold particles as a new in vivo marker of early acute lung injury. Am J Physiol Lung Cell Mol Physiol 287:L867–L878Google Scholar
  49. Hefland RB, Schwarzel PE, Johansen BV et al (2001) Silica-induced cytokine release from A549 cells: importance of surface area versus size. Hum Exp Toxicol 20:46–55Google Scholar
  50. Helland A, Wick P, Koehler A et al (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125–1131Google Scholar
  51. Helland A, Wick P, Koehler A et al (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Ciên Saúde Colet 13:441–452Google Scholar
  52. Henneberger A, Zareba W, Ibald-Mulli A et al (2005) Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect 113:440–446Google Scholar
  53. Hoet PH, Nemmar A, Nemery B (2004) Health impact of nanomaterials? Nat Biotechnol 22:19Google Scholar
  54. Hong S, Bielinska AU, Mecke A et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15:774–782Google Scholar
  55. Hong S, Hessler JA, Banaszak Holl MM et al (2006a) Physical interactions of nanoparticles with biological membranes: the observation of nanoscale hole formation. Chem Health Saf 13:16–20Google Scholar
  56. Hong S, Leroueil PR, Jnaus EK et al (2006b) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chem 17:728–734Google Scholar
  57. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033Google Scholar
  58. Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983Google Scholar
  59. Isakovic A, Markovic Z, Todorovic-Markovic B et al (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91:173–183Google Scholar
  60. Jacobsen NR, Moller P, Jensen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2Google Scholar
  61. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711Google Scholar
  62. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383Google Scholar
  63. Kam NWS, Jessop TC, Wender PA et al (2004) Nanotube molecular transporters: internalization of carbon nano-tube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851Google Scholar
  64. Karabanovas V, Zakarevicius E, Sukackaite A et al (2008) Examination of the stability of hydrophobic (CdSe)ZnS quantum dots in the digestive tract of rats. Photochem Photobiol Sci 7:725–729Google Scholar
  65. Karlsson HL, Nygren J, Moller L (2004) Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. Mutat Res 565:1–10Google Scholar
  66. Karlsson HL, Nilsson L, Moller L (2005) Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem Res Toxicol 18:19–23Google Scholar
  67. Karlsson HL, Ljungman AG, Lindbom J et al (2006) Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol Lett 165:203–211Google Scholar
  68. Karlsson HL, Cronholm P, Gustafsson J et al (2008a) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732Google Scholar
  69. Karlsson HL, Holgersson A, Moller L (2008b) Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem Res Toxicol 21:726–731Google Scholar
  70. Kato T, Yashiro T, Murata Y et al (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311:47–51Google Scholar
  71. Kawakami K, Iwamura A, Goto E et al (1990) Kinetics and clinical application of 99mTc-Technegas. Kaku Igaku (Japan) 27:725–733Google Scholar
  72. Kemp SJ, Thorley AJ, Gorelik J et al (2008) Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol 39:591–597Google Scholar
  73. Kim KJ, Crandall ED (1983) Heteropore populations of bullfrog alveolar epithelium. J Appl Physiol 54:140–146Google Scholar
  74. Kim KJ, Crandall ED (1996) Models for investigation of peptide and protein transport across cultured mammalian respiratory epithelial barriers. Pharm Biotechnol 8:325–346Google Scholar
  75. Kim KJ, Malik AB (2003) Protein transport across the lung epithelial barriers. Am J Physiol Lung Cell Mol Physiol 284:L247–L259Google Scholar
  76. Kim KJ, Matsukawa Y, Yamahara H et al (2003) Absorption of intact albumin across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 284:L458–L465Google Scholar
  77. Kim KJ, Fandy TE, Lee VH et al (2004) Net absorption of IgG via FcRn-mediated transcytosis across rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 287:L616–L622Google Scholar
  78. Kleinstreuer C, Zhang Z, Donohue JF (2008) Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng 10:195–220Google Scholar
  79. Knol AB, de Hartog JJ, Boogaard H et al (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6:19Google Scholar
  80. Konig MF, Lucocq JM, Weibel ER (1993) Demonstration of pulmonary vascular perfusion by electron and light microscopy. J Appl Physiol 75:1877–1883Google Scholar
  81. Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530Google Scholar
  82. Kreyling WG, Semmler-Behnke M, Moller W (2006a) Health implications of nanoparticles. J Nanopart Res 8:543–562Google Scholar
  83. Kreyling WG, Semmler-Behnke M, Moller W (2006b) Ultrafine particle-lung interactions: does size matter? J Aerosol Med 19:74–83Google Scholar
  84. Kreyling WG, Semmler-Behnke M, Seitz J et al (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Suppl 1):55–60Google Scholar
  85. Kroto HW, Heath JR, O’Brien S et al (1985) C60-Buckminsterfullerene. Nature 318:162–163Google Scholar
  86. Lam HF, Chen LC, Ainsworth D et al (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:333–341Google Scholar
  87. Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134Google Scholar
  88. Lam CW, James JT, McCluskey R et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217Google Scholar
  89. Law WC, Yong KT, Roy I et al (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310Google Scholar
  90. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49Google Scholar
  91. Li D, He Q, Cui Y et al (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488–493Google Scholar
  92. Liao D, Creason J, Shy C et al (1999) Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 107:521–525Google Scholar
  93. Lin P, Chen JW, Chang LW et al (2008) Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ Sci Technol 42:6264–6270Google Scholar
  94. Lok CN, Ho CM, Chen R et al (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534Google Scholar
  95. Lovric J, Bazzi HS, Cuie Y et al (2005a) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385Google Scholar
  96. Lovric J, Cho SJ, Winnik FM et al (2005b) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234Google Scholar
  97. Male KB, Lachance B, Hrapovic S et al (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493Google Scholar
  98. Matsukawa Y, Lee VH, Crandall ED et al (1997) Size-dependent dextran transport across rat alveolar epithelial cell monolayers. J Pharm Sci 86:305–309Google Scholar
  99. McIntosh CM, Esposito EA 3 rd, Boal AK et al (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629Google Scholar
  100. Mecke A, Majoros IJ, Patri AK et al (2005) Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354Google Scholar
  101. Mehta D, Bhattacharya J, Matthay MA et al (2004) Integrated control of lung fluid balance. Am J Physiol Lung Cell Mol Physiol 287:L1081–L1090Google Scholar
  102. Moghimi SM, Hunter AC (2001) Capture of stealth nanoparticles by the body’s defences. Crit Rev Ther Drug Carrier Syst 18:527–550Google Scholar
  103. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  104. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330Google Scholar
  105. Monteiro-Riviere NA, Tran CL (2007) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare, New YorkGoogle Scholar
  106. Moon MH, Kang D, Jung J et al (2004) Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation. J Sep Sci 27:710–717Google Scholar
  107. Muhlfeld C, Rothen-Rutishauser B, Blank F et al (2008) Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:L817–L829Google Scholar
  108. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231Google Scholar
  109. Muller J, Decordier I, Hoet PH et al (2008a) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–433Google Scholar
  110. Muller J, Huaux F, Fonseca A et al (2008b) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21:1698–1705Google Scholar
  111. Mutlu GM, Green D, Bellmeyer A et al (2007) Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 117:2952–2961Google Scholar
  112. Mutlu GM, Budinger GR, Green AA et al (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10(5):1664–1667Google Scholar
  113. Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627Google Scholar
  114. Nemmar A, Vanbilloen H, Hoylaerts MF et al (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668Google Scholar
  115. Nemmar A, Hoet PH, Vanquickenborne B et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414Google Scholar
  116. Nemmar A, Hoylaerts MF, Hoet PH et al (2003) Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 186:38–45Google Scholar
  117. Nemmar A, Hoylaerts MF, Hoet PH et al (2004) Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett 149:243–253Google Scholar
  118. Niemeyer CM, Mirkin CA (2004) Nanobiotechnology. Wiley-VCH, WeinheimGoogle Scholar
  119. Oberdorster G (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Health Effects Institute, CambridgeGoogle Scholar
  120. Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8Google Scholar
  121. Oberdorster G (2002) Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56Google Scholar
  122. Oberdorster G, Ferin J, Gelein R et al (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199Google Scholar
  123. Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179Google Scholar
  124. Oberdorster G, Gelein RM, Ferin J et al (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 7:111–124Google Scholar
  125. Oberdorster G, Sharp Z, Atudorei V et al (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543Google Scholar
  126. Oberdorster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445Google Scholar
  127. Oberdorster G, Maynard A, Donaldson K et al (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8Google Scholar
  128. Oberdorster G, Oberdorster E, Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839Google Scholar
  129. Orr G, Panther DJ, Cassens KJ et al (2009) Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane. Toxicol Appl Pharmacol 236:210–220Google Scholar
  130. Park S, Lee YK, Jung M et al (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(Suppl 1):S59–S65Google Scholar
  131. Partha R, Lackey M, Hirsch A et al (2007) Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures. J Nanobiotechnology 5:6Google Scholar
  132. Peters A, Liu E, Verrier RL et al (2000) Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11–17Google Scholar
  133. Peters A, Frohlich M, Doring A et al (2001) Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J 22:1198–1204Google Scholar
  134. Pietropaoli AP, Frampton MW, Hyde RW et al (2004) Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 16(Suppl 1):59–72Google Scholar
  135. Politis M, Pilinis C, Lekkas TD (2008) Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Global NEST J 10:439–452Google Scholar
  136. Porter AE, Muller K, Skepper J et al (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:409–419Google Scholar
  137. Porter AE, Gass M, Bendall JS et al (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492Google Scholar
  138. Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169Google Scholar
  139. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007a) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153Google Scholar
  140. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007b) Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett 7:1344–1348Google Scholar
  141. Sauer UG (2009) Animal and non-animal experiments in nanotechnology—the results of a critical literature survey. ALTEX 26:109–128Google Scholar
  142. Sayes CM, Fortner JD, Guo W et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887Google Scholar
  143. Sayes CM, Gobin AM, Ausman KD et al (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595Google Scholar
  144. Sayes CM, Marchione AA, Reed KL et al (2007a) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406Google Scholar
  145. Sayes CM, Reed KL, Warheit DB (2007b) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180Google Scholar
  146. Schlesinger PA, Stillman MT, Peterson L (1982) Polyarthritis with birefringent lipid within synovial fluid macrophages: case report and ultrastructural study. Arthritis Rheum 25:1365–1368Google Scholar
  147. Scrivens W, Tour JM (1994) Synthesis of 14 C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116:4517–4518Google Scholar
  148. Semmler-Behnke M, Takenaka S, Fertsch S et al (2007) Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airway epithelium. Environ Health Perspect 115:728–733Google Scholar
  149. Shiohara A, Hoshino A, Hanaki K et al (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675Google Scholar
  150. Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926Google Scholar
  151. Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708Google Scholar
  152. Shvedova AA, Fabisiak JP, Kisin ER et al (2008) Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–590Google Scholar
  153. Silva VM, Corson N, Elder A et al (2005) The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci 85:983–989Google Scholar
  154. Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362Google Scholar
  155. Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047Google Scholar
  156. Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358Google Scholar
  157. Spohn P, Hirsch C, Hasler F et al (2009) C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–1139Google Scholar
  158. Stern ST, Zolnik BS, McLeland CB et al (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106:140–152Google Scholar
  159. Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48Google Scholar
  160. Su Y, He Y, Lu H et al (2009) The cytotoxicity of cadmium based, aqueous phase—synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25Google Scholar
  161. Takenaka S, Karg E, Roth C et al (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551Google Scholar
  162. Takenaka S, Karg E, Kreyling WG et al (2004) Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol 16(Suppl 1):83–92Google Scholar
  163. Takenaka S, Karg E, Kreyling WG et al (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18:733–740Google Scholar
  164. Timonen KL, Vanninen E, de Hartog J et al (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Sci Environ Epidemiol 16:332–341Google Scholar
  165. Tokuyama H, Yamago S, Nakamura E et al (1993) Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc 115:7918–7919Google Scholar
  166. Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55Google Scholar
  167. Wagner AJ, Bleckmann CA, Murdock RC et al (2007) Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. J Phys Chem B 111:7353–7359Google Scholar
  168. Wallace WE, Keane MJ, Murray DK, et al (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 9:23–38Google Scholar
  169. Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024Google Scholar
  170. Wang L, Wang K, Santra S et al (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654Google Scholar
  171. Wang Y, Camargo PH, Skrabalak SE et al (2008) A facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 24:12042–12046Google Scholar
  172. Warheit DB (2006) What is currently known about the health risks related to carbon nanotube exposures? Carbon 44:1064–1069Google Scholar
  173. Warheit DB, Sayes CM, Reed KL et al (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42Google Scholar
  174. Wick P, Manser P, Limbach LK et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131Google Scholar
  175. Widera A, Beloussow K, Kim KJ et al (2003a) Phenotype-dependent synthesis of transferrin receptor in rat alveolar epithelial cell monolayers. Cell Tissue Res 312:313–318Google Scholar
  176. Widera A, Kim KJ, Crandall ED et al (2003b) Transcytosis of GCSF-transferrin across rat alveolar epithelial cell monolayers. Pharm Res 20:1231–1238Google Scholar
  177. Wiseman DA, Wells SM, Wilham J et al (2006) Endothelial response to stress from exogenous Zn2+ resembles that of NO-mediated nitrosative stress, and is protected by MT-1 overexpression. Am J Physiol 291:C555–C568Google Scholar
  178. Wright EM, Pietras RJ (1974) Routes of nonelectrolyte permeation across epithelial membranes. J Membr Biol 17:293–312Google Scholar
  179. Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807Google Scholar
  180. Xia T, Kovochich M, Liong M et al (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96Google Scholar
  181. Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150Google Scholar
  182. Xu Z, Hu PA, Wang S et al (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surf Sci 254:1915–1918Google Scholar
  183. Yacobi NR, Phuleria HC, Demaio L et al (2007) Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro 21:1373–1381Google Scholar
  184. Yacobi NR, Demaio L, Xie J et al (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 4:139–145Google Scholar
  185. Yacobi NR, Malmstadt N, Fazlollahi F et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42:604–614Google Scholar
  186. Yamago S, Tokuyama H, Nakamura E et al (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2:385–389Google Scholar
  187. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:C1495–C1502Google Scholar
  188. Yang W, Peters JI, Williams RO 3rd (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247Google Scholar
  189. Zhang T, Stilwell JL, Gerion D et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6:800–808Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nazanin R. Yacobi
    • 1
    • 9
  • Farnoosh Fazllolahi
    • 1
    • 9
  • Yong Ho Kim
    • 1
    • 2
  • Arnold Sipos
    • 1
    • 2
  • Zea Borok
    • 1
    • 2
    • 4
  • Kwang-Jin Kim
    • 1
    • 2
    • 6
    • 7
    • 8
  • Edward D. Crandall
    • 1
    • 2
    • 3
    • 5
    • 9
  1. 1.Will Rogers Institute Pulmonary Research CenterUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Department of PathologyUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Department of Physiology and BiophysicsUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesUSA
  8. 8.Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  9. 9.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations