Advertisement

Box constrained total generalized variation model and primal-dual algorithm for Poisson noise removal

  • Yehu LvEmail author
  • Xinwei Liu
Article
  • 8 Downloads

Abstract

We consider the image denoising problem under Poisson noise. To further enhance the image denoising effect, a box constraint is incorporated into the total generalized variation (TGV) model by simply projecting all pixel values of the denoised image to lie in a certain interval (e.g., [0, 1] for normalized images and [0, 255] for 8-bit images). Thus, a box constrained TGV model is proposed. Computationally, combining with the dual representation of the second-order TGV regularization, our proposed model is transformed into a minimax problem, and the Chambolle–Pock’s first-order primal-dual algorithm is used to compute the saddle point of the minimax problem. In addition, the convergence of Algorithm 1 is discussed. Numerical experiments demonstrate that our proposed model not only gets better visual effects but also obtains higher signal-to-noise ratio, peak signal-to-noise ratio and structural similarity index than several existing state-of-the-art methods.

Keywords

Image denoising Poisson noise Total generalized variation (TGV) Box constraint Primal-dual algorithm 

Mathematics Subject Classification

35-XX 49-XX 68-XX 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11271107 and the Natural Science Foundation of Hebei Province of China under Grant No. A2015202365.

Funding

This study was funded by the National Natural Science Foundation of China (11271107) and the Natural Science Foundation of Hebei Province of China (A2015202365).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest, whether financial or non-financial.

Human participants

This research did not involve human participants and animals.

References

  1. 1.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bratsolis, E., Sigelle, M.: A spatial regularization method preserving local photometry for Richardson–Lucy restoration. Astron. Astrophys. 375(3), 1120–1128 (2001)CrossRefGoogle Scholar
  3. 3.
    Starck, J., Murtagh, F.: Astronomical Image and Data Analysis. Springer, Berlin (2007)zbMATHGoogle Scholar
  4. 4.
    Dey, N., Blanc-Feraud, L., Zimmer, C., et al.: Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69(4), 260–266 (2010)CrossRefGoogle Scholar
  5. 5.
    Kryvanos, A., Hesser, J., Steidl, G.: Nonlinear image restoration methods for marker extraction in 3D fluorescent microscopy. Proc. SPIE 5674, 432–443 (2005)CrossRefGoogle Scholar
  6. 6.
    Sarder, P., Nehorai, A.: Deconvolution methods for 3D fluorescence microscopy images. IEEE Signal Proc. Mag. 23(3), 32–45 (2006)CrossRefGoogle Scholar
  7. 7.
    Landi, G., Piccolomini, E.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise. Comput. Med. Imaging Graph. 36(1), 38–46 (2012)CrossRefGoogle Scholar
  8. 8.
    Rodrigues, I., Sanches, J., Bioucas-Dias, J.: Denoising of medical images corrupted by Poisson noise. In: IEEE International Conference on Image Processing (2008)Google Scholar
  9. 9.
    Trinh, H., Luong, M., Dibos, F., et al.: An effective example-based learning method for denoising of medical images corrupted by heavy gaussian noise and Poisson noise. In: IEEE International Conference on Image Processing (2015)Google Scholar
  10. 10.
    Le, T., Chartrand, R., Asaki, T.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sawatzky, A., Brune, C., Kosters, T., et al.: EM-TV Methods for Inverse Problems with Poisson Noise. Springer, Cham (2013)CrossRefGoogle Scholar
  12. 12.
    Bonettini, S., Benfenati, A., Ruggiero, V.: Primal-dual first order methods for total variation image restoration in presence of Poisson noise. In: IEEE International Conference on Image Processing (2014)Google Scholar
  13. 13.
    Wen, Y., Chan, R., Zeng, T.: Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59(1), 141–160 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jiang, L., Huang, J., Lv, X., et al.: Alternating direction method for the high-order total variation-based Poisson noise removal problem. Numer. Algorithm 69(3), 495–516 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Florian, K., Kristian, B., Thomas, P., et al.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)CrossRefGoogle Scholar
  17. 17.
    Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, Lecture Notes in Computer Science, vol. 8293. Springer, Berlin (2014)Google Scholar
  18. 18.
    Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: The 9th International Conference on Sampling Theory and Applications (2011)Google Scholar
  19. 19.
    Liu, X.: Augmented Lagrangian method for total generalized variation based Poissonian image restoration. Comput. Math. Appl. 71(8), 1694–1705 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Amir, B., Marc, T.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chan, R., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ma, L., Michael, K., Yu, J., et al.: Efficient box-constrained TV-type-\(l^{1}\) algorithms for restoring images with impulse noise. J. Comput. Math. 31, 249–270 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ono, S.: Primal-dual plug-and-play image restoration. IEEE Signal Process. Lett. 24(8), 1108–1112 (2017)CrossRefGoogle Scholar
  25. 25.
    Valkonen, T.: A primal-dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Probl. 30(5), 900–914 (2013)MathSciNetGoogle Scholar
  26. 26.
    Eckstein, J., Bertsekas, D.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1–3), 81–101 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Combettes, P., Pesquet, J.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6), 065014 (2008) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Franois-Xavier, D., Jalal, M., Jean-Luc, S.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Process. 18(2), 310–321 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rockafellar, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Z., Bovik, A., Sheikh, H., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MathematicsHebei University of TechnologyTianjinChina

Personalised recommendations