Advertisement

Bilinear operators associated with generalized Schrödinger operators

  • Nan Hu
  • Yu LiuEmail author
Article
  • 33 Downloads

Abstract

Let \(\mathcal {L}=-\Delta + \mu \) be the generalized Schrödinger operator on \(\mathbb {R}^d\), \(d\ge 3 \), where \(\Delta \) is the Laplacian, \(\mu \) is a nonnegative Radon measure on \(\mathbb {R}^d\) and \({H}^1_{\mathcal {L}}(\mathbb {R}^d)\) is the Hardy type space associated to \(\mathcal {L}\). In this paper we establish an estimate for the bilinear operators \(T^{+}\) or \(T^{-}\) defined by
$$\begin{aligned} T^{\pm }(f,g)(x)=(T_{1}f)(x)(T_{2}g)(x)\pm (T_{2}f)(x)(T_{1}g)(x), \end{aligned}$$
where \(T_{1}\) and \(T_{2}\) are Calderón-Zygmund operators related to \(\mathcal {L}\). Specifically, we prove that either \(T^{+}\) or \(T^{-}\) is bounded from \({L}^p(\mathbb {R}^d)\times {L}^q(\mathbb {R}^d)\) to \( {H}^1_{\mathcal {L}}(\mathbb {R}^d)\) for \(1<p, q<\infty \) with \(1/p+1/q=1\).

Keywords

Bilinear operators Riesz transform Schrödinger operators Hardy space 

Mathematics Subject Classification

42A20 42A30 35J10 

Notes

References

  1. 1.
    Coifman, R., Grafakos, L.: Hardy space estimates for multilinear operators, I. Rev. Mat. Iberoam. 8, 45–67 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford University Press, New York (1985)zbMATHGoogle Scholar
  4. 4.
    Grafakos, L.: Hardy space estimates for multilinear operators, II. Rev. Mat. Iberoam. 8, 69–92 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lin, C., Lin, C., Liu, Y., Liu, H.: Bilinear operators associated with Schrödinger operators. Stud. Math. 205, 281–295 (2011)CrossRefGoogle Scholar
  6. 6.
    Shen, Z.: On fundamental solutions of generalized Schrödinger operators. J. Funct. Anal. 167, 521–564 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu, L., Yan, Y.: Heat kernals, upper bounds and Hardy spaces associated to generalized Schrödinger operators. J. Funct. Anal. 270, 3709–3749 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations