Weyl calculus in Wiener spaces and in QED
- 6 Downloads
Abstract
The concern of this article is a semiclassical Weyl calculus on an infinite dimensional Hilbert space H. If (i, H, B) is a Wiener triplet associated to H, the quantum state space will be the space of \(L^2\) functions on B with respect to a Gaussian measure with h / 2 variance, where h is the semiclassical parameter. We prove the boundedness of our pseudodifferential operators (PDO) in the spirit of Calderón–Vaillancourt with an explicit bound, a Beals type characterization, and metaplectic covariance. An application to a model of quantum electrodynamics is added in the last section (Sect. 7), for fixed spin 1 / 2 particles interacting with the quantized electromagnetic field (photons). We prove that some observable time evolutions, the spin evolutions, the magnetic and electric evolutions when subtracting their free evolutions, are PDO in our class.
Keywords
Pseudodifferential operators Semiclassical analysis Infinite dimensional analysis Calderón–Vaillancourt bounds Beals characterization Covariance Metaplectic group Spins interaction Quantum electrodynamics Photon number Bogoliubov transformsNotes
References
- 1.Amour, L., Jager, L., Nourrigat, J.: On bounded Weyl pseudodifferential operators in Wiener spaces. J. Funct. Anal. 269, 2747–2812 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Amour, L., Lascar, R., Nourrigat, J.: Beals characterization of pseudodifferential operators in Wiener spaces. Appl. Math. Res. Express 1, 242–270 (2017)MathSciNetzbMATHGoogle Scholar
- 3.Amour, L., Lascar, R., Nourrigat, J.: Weyl calculus in QED I. The unitary group. J. Math. Phys. 58(1), 013501 (2017). https://doi.org/10.1063/1.4973742 MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137(2), 299–395 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1), 45–57 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Bony, J.M.: Caractérisation des opd. Séminaire EDP, X. Exposé 23, p. 17 (1996-1997)Google Scholar
- 7.Bony, J.M.: Characterization of pseudo-differential operators. In: Progress in Non linear Differential Equations and Their Applications. Vol. 84, pp. 21–34. Birkhaüser Springer, New York (2013)Google Scholar
- 8.Bony, J.M., Chemin, J.Y.: Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. Fr. 122(1), 77–118 (1994)CrossRefzbMATHGoogle Scholar
- 9.Boutet de Monvel, L., Kree, P.: Pseudodifferential operators and Gevrey classes. Ann. Inst. Fourier 17, 295–323 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Bruneau, L., Dereziński, J.: Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations. J. Math. Phys. 48(2), 022101 (2007). 24 ppMathSciNetCrossRefzbMATHGoogle Scholar
- 11.Calderón, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Natl. Acad. Sci. U.S.A. 69, 1185–1187 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Combescure, M., Robert, D.: Coherent states and applications in mathematical physics. In: Theoretical and Mathematical Physics. pp. xiv+415. Springer, Dordrecht (2012). ISBN: 978-94-007-0195-3Google Scholar
- 13.Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians. Rev. Math. Phys. 11(4), 383–450 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)zbMATHGoogle Scholar
- 15.Gross, L.: Abstract Wiener spaces. In: Proceedings of the 5th Berkeley Sym. Math. Stat. Prob, vol. 2, pp. 31–42 (1965)Google Scholar
- 16.Hiroshima, F., Sasaki, I., Spohn, H., Suzuki, A.: Enhanced Binding in Quantum Field Theory. Kyushu University COE Lecture Note 38 (2012). arXiv:1203.1136
- 17.Hörmander, L.: The Analysis of Linear Partial Differential Operators, III edn. Springer, Berlin (1985)zbMATHGoogle Scholar
- 18.Jager, L.: Stochastic extensions of symbols in Wiener spaces and heat operator. arXiv:1607.02253 (2016)
- 19.Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Maths, vol. 129. Cambridge Univ. Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
- 20.Kuo, H.H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin-New York (1975)CrossRefGoogle Scholar
- 21.Lascar, B.: Une classe d’opérateurs elliptiques du second ordre sur un espace de Hilbert. J. Funct. Anal. 35(3), 316–343 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators, Pseudo-Differential Operators. Theory and Applications, vol. 3. Birkhuser Verlag, Basel (2010)CrossRefzbMATHGoogle Scholar
- 23.Ramer, R.: On nonLinear transformations of Gaussian measures. J. Funct. Anal. 15, 166–187 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York, London (1978)zbMATHGoogle Scholar
- 25.Shale, D.: Linear symmetries of free boson fields. Trans. Am. Math. Soc. 103, 149–167 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Simon, B.: The \(P(\varphi )_2\) Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)Google Scholar
- 27.Taylor, M.E.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)CrossRefzbMATHGoogle Scholar
- 28.Unterberger, A.: Oscillateur harmonique et opérateurs pseudo-différentiels. Ann. Inst. Fourier (Grenoble) 29(3), 201–221 (1979). xiMathSciNetCrossRefzbMATHGoogle Scholar
- 29.Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)zbMATHGoogle Scholar