Advertisement

Hermite expansions of some tempered distributions

  • Hiroyuki ChiharaEmail author
  • Takashi Furuya
  • Takumi Koshikawa
Article

Abstract

We compute Hermite expansions of some tempered distributions by using the Bargmann transform. In other words, we calculate the Taylor expansions of the corresponding entire functions. Our method of computations seems to be superior to the direct computations in the shifts of singularities and the higher dimensional cases.

Keywords

Bargmann transform Tempered distribution Hermite expansion 

Mathematics Subject Classification

Primary 46F12 Secondary 33C45 47B32 

References

  1. 1.
    Chihara, H.: Bounded Berezin–Toeplitz operators on the Segal–Bargmann space. Integral Equ. Oper. Theory 63, 321–335 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chihara, H.: Bargmann-type transforms and modified harmonic oscillators (submitted). arXiv:1702.06646
  3. 3.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  4. 4.
    Kagawa, T.: The Hermite function expansions of the Heaviside function. J. Pseudo Differ. Oper. Appl. 6, 21–32 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Simon, B.: Distributions and their Hermite expansions. J. Math. Phys. 12, 140–148 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sjöstrand, J.: Function spaces associated to global I-Lagrangian manifolds. In: Morimoto, M., Kawai, T. (eds.) Structure of Solutions to Differential Equations (Katata/Kyoto 1995), pp. 369–423. World Scientific Publishing, River Edge (NJ) (1996)Google Scholar
  7. 7.
    Wong, M.W.: Weyl Transforms. Springer, Berlin (1998)zbMATHGoogle Scholar
  8. 8.
    Wong, M.W.: Partial Differential Equations: Topics in Fourier Analysis. CRC Press, Boca Raton (2014)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationUniversity of the RyukyusNishiharaJapan
  2. 2.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  3. 3.Department of Science, Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchiJapan

Personalised recommendations