Advertisement

Ellipticity of the quantum mechanical Hamiltonians: corner singularity of the helium atom

  • Heinz-Jürgen Flad
  • Gohar Flad-Harutyunyan
  • Bert-Wolfgang Schulze
Article

Abstract

In paper (Flad and Harutyunyan in Discrete Contin Dyn Syst 420–429, 2011) is shown that the Hamiltonian of the helium atom in the Born–Oppenheimer approximation, in the case if two particles coincide, is an edge-degenerate operator, which is elliptic in the corresponding edge calculus. The aim of this paper is an analogous investigation in the case if all three particles coincide. More precisely, we show that the Hamiltonian in the mentioned case is a corner-degenerate operator, which is elliptic as an operator in the corner analysis.

Notes

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft DFG (Grant No. HA 5739/3-1) is gratefully acknowledged.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematics Series, vol. 55, Gaithersburg, Maryland, US (1972)Google Scholar
  2. 2.
    Dorschfeldt, Ch.: Algebras of Pseudo-Differential Operators Near Edge and Corner Singularities. Mathematics Research, vol. 102. Wiley, Berlin (1998)zbMATHGoogle Scholar
  3. 3.
    Flad, H.-J., Harutyunyan, G.: Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Discrete Contin. Dyn. Syst. 1, 420–429 (2011)Google Scholar
  4. 4.
    Granzow, K.D.: N-dimensional total orbital angular-monentum operator. J. Math. Phys. 4, 897–900 (1963)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Harutyunyan, G., Schulze, B.-W.: Elliptic Mixed, Transmission and Singular Crack Problems. EMS Tracts in Mathematics, vol. 4. European Math. Soc. Publ. Hause, Zürich (2008)zbMATHGoogle Scholar
  6. 6.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  7. 7.
    Mott, N.F., Massey, H.S.W.: The Theory of Atomic Collisions, 3rd edn. Oxford University Press, Oxford (1965)zbMATHGoogle Scholar
  8. 8.
    Schulze, B.-W.: Boundary Value Problems and Singular Pseudo-Differential Operators. Wiley, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Schulze, B.-W.: Operators with symbol hierarchies and iterated asymptotics. Publ. RIMS Kyoto Univ. 38, 735–802 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Heinz-Jürgen Flad
    • 1
  • Gohar Flad-Harutyunyan
    • 1
  • Bert-Wolfgang Schulze
    • 2
  1. 1.Zentrum MathematikTechnische Universität MünchenMunichGermany
  2. 2.Institut für MathematikUniversität PotsdamPotsdamGermany

Personalised recommendations