Frames in Hermite-Bergman and special Hermite-Bergman spaces

  • A. Antony Selvan
  • R. Radha


It is well known that the image of \(L^2(\mathbb {R}^n)\) under the Hermite semigroup \(e^{-tH}\) is a Bergman space \(\mathcal {H}_t(\mathbb {C}^n)\) with the reproducing kernel \(L_t\), for \(t>0\). In this paper, it is shown that the discrete system \(\{e_{ap+ibq, t}:p,q\in \mathbb {Z}^n\}\), for \(a,b>0\), arising out of \(L_t\) turns out to be a frame for \(\mathcal {H}_t(\mathbb {C}^n)\) iff \(ab<\pi \sinh 4t\). A similar type of problem is also discussed for Bessel sequences and frames in holomorphic Sobolev spaces associated with the Hermite semigroup. An attempt is also made to study a similar type of problem for the Bergman space \(\mathcal {B}_t^*(\mathbb {C}^{2n})\), which is the image of \(L^2(\mathbb {C}^n)\) under the special Hermite semigroup.


Bergman spaces Bessel sequence Frames Gabor frames Hermite functions Hermite semigroup Sobolev spaces Special Hermite functions 

Mathematics Subject Classification

30H20 33C45 42C15 



We thank the referee for meticulously reading our manuscript and giving us several valuable suggestions in revising the manuscript.


  1. 1.
    Benedetto, J.J.: Frames Decompositions, Sampling, and Uncertainity Principles Inqualities. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, Studies in Advanced Mathematics. CRC, Boca Raton (1993)Google Scholar
  2. 2.
    Byun, D.W.: Inversions of Hermite semigroup. Proc. Am. Math. Soc. 118, 437–445 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daubechies, I., Grossmann, A.: Frames in the Bargmann space of entire functions. Comm. Pure Appl. Math., 41(2), 151–164 (1988)Google Scholar
  4. 4.
    Krotz, B., Thangavelu, S., Xu, Y.: The Heat Kernel Transform for the Heisenberg group. J. Funct. Anal. 225(2), 301–336 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lyubarskii, Y.I.: Frames in the Bargmann space of Entire Functions. In Entire and Subharmonic Functions, Amer. Math., Soc., Providence, pp. 167–180 (1992)Google Scholar
  6. 6.
    Radha, R., Thangavelu, S.: Holomorphic Sobolev spaces, Hermite and Special Hermite semigroups, and a Paley-Wiener theorem for the Windowed Fourier Transform. J. Math. Anal. Appl. 354, 564–574 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Radha, R., Naidu, D.V.: Frames in generalized fock spaces. J. Math. Anal. Appl. 378, 140–150 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Seip, K.: Density theorems for sampling and interpolation in the Bargmnn-Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Seip, K.: Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Am. Math. Soc. 117, 213–219 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Seip, K., Wallsten, R.: Density theorems for sampling and interpolation in the Bargmnn-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Sun, W., Zhou, X.: Irregular gabor frames and their stability. Appl. Comput. Harmon. Anal. 13, 63–76 (2002)Google Scholar
  12. 12.
    Sun, W., Zhou, X.: Irregular wavelet/gabor frames. Proc. Am. Math. Soc. 131(9), 2883–2893 (2003)Google Scholar
  13. 13.
    Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton (1993)Google Scholar
  14. 14.
    Thangavelu, S.: Hermite and Laguerre Semigroups: Some Recent Developments. Seminaires et Congres (2006)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations