Existence of stationary solutions for some non-Fredholm integro-differential equations with superdiffusion

Article

Abstract

We prove the existence of stationary solutions for some reaction-diffusion equations with superdiffusion. The corresponding elliptic problem contains the operators with or without Fredholm property. The fixed point technique in appropriate \(H^{2}\) spaces is employed.

Keywords

Solvability conditions Non Fredholm operators Integro-differential equations Stationary solutions Superdiffusion 

Mathematics Subject Classification

35J10 35P30 35K57 

References

  1. 1.
    Agranovich, M.S.: Elliptic boundary problems. Encyclopaedia Math. Sci., vol. 79, pp. 1–144. Partial Differential Equations, IX, Springer, Berlin (1997)Google Scholar
  2. 2.
    Apreutesei, N., Bessonov, N., Volpert, V., Vougalter, V.: Spatial structures and generalized travelling waves for an integro- differential equation. Discrete Contin. Dyn. Syst. Ser. B 13(3), 537–557 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carreras, B., Lynch, V., Zaslavsky, G.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096–5103 (2001)CrossRefGoogle Scholar
  5. 5.
    Ducrot, A., Marion, M., Volpert, V.: Systemes de réaction-diffusion sans propriété de Fredholm. CRAS 340(9), 659–664 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Ducrot, A., Marion, M., Volpert, V.: Reaction-diffusion problems with non Fredholm operators. Adv. Differ. Equ. 13(11–12), 1151–1192 (2008)MathSciNetMATHGoogle Scholar
  7. 7.
    Ducrot, A., Marion, M., Volpert, V.: Reaction-diffusion waves (with the Lewis number different from 1), p. 113. Publibook, Paris (2009)MATHGoogle Scholar
  8. 8.
    Genieys, S., Volpert, V., Auger, P.: Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom. 1(1), 63–80 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hislop, P.D., Sigal, I.M.: Introduction to spectral theory. With applications to Schrödinger operators, p. 337. Springer (1996)Google Scholar
  10. 10.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)MATHGoogle Scholar
  11. 11.
    Manandhar, P., Jang, J., Schatz, G.C., Ratner, M.A., Hong, S.: Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett. 90, 4043–4052 (2003)CrossRefGoogle Scholar
  12. 12.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sancho, J., Lacasta, A., Lindenberg, K., Sokolov, I., Romero, A.: Diffusion on a solid surface: anomalous is normal. Phys. Rev. Lett. 92, 250601 (2004)CrossRefGoogle Scholar
  14. 14.
    Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975)CrossRefGoogle Scholar
  15. 15.
    Solomon, T., Weeks, E., Swinney, H.: Observation of anomalous diffusion and Levy flights in a two-dimensional rotating flow. Phys. Rev. Lett. 71, 3975–3978 (1993)CrossRefGoogle Scholar
  16. 16.
    Volevich, L.R.: Solubility of boundary value problems for general elliptic systems. Mat. Sb., 68, 110, 373–416 (1965); English translation: Am. Math. Soc. Transl., 67, 2, 182–225 (1968)Google Scholar
  17. 17.
    Volpert, V.: Elliptic partial differential equations, vol. I, p. 639. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser (2011)Google Scholar
  18. 18.
    Volpert, V., Kazmierczak, B., Massot, M., Peradzynski, Z.: Solvability conditions for elliptic problems with non-Fredholm operators. Appl. Math. 29(2), 219–238 (2002)MathSciNetMATHGoogle Scholar
  19. 19.
    Vougalter, V., Volpert, V.: Solvability conditions for some non Fredholm operators. Proc. Edinb. Math. Soc. 54, 1(2), 249–271 (2011)Google Scholar
  20. 20.
    Vougalter, V., Volpert, V.: On the solvability conditions for some non Fredholm operators. Int. J. Pure Appl. Math. 60(2), 169–191 (2010)MathSciNetMATHGoogle Scholar
  21. 21.
    Vougalter, V., Volpert, V.: On the solvability conditions for the diffusion equation with convection terms. Commun. Pure Appl. Anal. 11(1), 365–373 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Vougalter, V., Volpert, V.: Solvability relations for some non Fredholm operators. Int. Electron. J. Pure Appl. Math. 2(1), 75–83 (2010)MATHGoogle Scholar
  23. 23.
    Volpert, V., Vougalter, V.: On the solvability conditions for a linearized Cahn-Hilliard equation. Rend. Istit. Mat. Univ. Trieste 43, 1–9 (2011)MathSciNetMATHGoogle Scholar
  24. 24.
    Vougalter, V., Volpert, V.: Solvability conditions for some systems with non Fredholm operators. Int. Electron. J. Pure Appl. Math. 2(3), 183–187 (2010)MATHGoogle Scholar
  25. 25.
    Vougalter, V., Volpert, V.: Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems. Anal. Math. Phys. 2(4), 473–496 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Institute Camille Jordan, UMR 5208 CNRSUniversity Lyon 1VilleurbanneFrance
  3. 3.Laboratoire Poncelet, UMI 2615 CNRSMoscowRussia

Personalised recommendations