Preferred quantization rules: Born–Jordan versus Weyl. The pseudo-differential point of view



There has recently been evidence for replacing the usual Weyl quantization procedure by the older and much less known Born–Jordan rule. In this paper we discuss this quantization procedure in detail and relate it to recent results of Boggiato, De Donno, and Oliaro on the Cohen class. We begin with a discussion of some properties of Shubin’s τ-pseudo-differential calculus, which allows us to show that the Born–Jordan quantization of a symbol a is the average for \({\tau\in[0,1]}\) of the τ-operators with symbol a. We study the properties of the Born–Jordan operators, including their symplectic covariance, and give their Weyl symbol.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boggiatto P., De Donno G., Oliaro A.: Time–frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362(9), 4955–4981 (2010)MathSciNetMATHGoogle Scholar
  2. 2.
    Boggiatto P., Cuong B.K., De Donno G., Oliaro A.: Weighted integrals of Wigner representations. J. Pseudo-Differen. Oper. Appl. 1(4), 401–415 (2010)MATHCrossRefGoogle Scholar
  3. 3.
    Born M., Jordan P.: Zur Quantenmechanik. Zeits. Physik 34, 858–888 (1925)CrossRefGoogle Scholar
  4. 4.
    Castellani L.: Quantization rules and Dirac’s correspondence. Il Nuovo Cimento 48A(3), 359–368 (1978)MathSciNetGoogle Scholar
  5. 5.
    Crehan P.: The parametrisation of quantisation rules equivalent to operator orderings, and the effect of different rules on the physical spectrum. J. Phys. A Math. Gen. 22(7), 811–822 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedak W.A., Prentis J.J.: The 1925 Born and Jordan paper “On quantum mechanics”. Am. J. Phys. 77(2), 128–139 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Gosson, M.: Symplectic Geometry and Quantum Mechanics, Birkhäuser, Basel, series “Operator Theory: Advances and Applications” (subseries: “Advances in Partial Differential Equations”), vol. 166 (2006)Google Scholar
  8. 8.
    de Gosson, M.: Symplectic methods in harmonic analysis. Appl. Math. Phys., Birkhäuser (2011, to appear)Google Scholar
  9. 9.
    de Gosson, M., Hiley, B.: Imprints of the quantum world in classical mechanics. Preprint (2010)Google Scholar
  10. 10.
    Gröchenig K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2000)Google Scholar
  11. 11.
    Kauffmann, S.K.: Unambiguous quantization from the maximum classical correspondence that is self-consistent: the slightly stronger canonical commutation rule Dirac missed. arXiv:0908.3024 (2010)Google Scholar
  12. 12.
    Mackey, G.W.: The relationship between classical and quantum mechanics. In: Contemporary Mathematics 214, Amer. Math. Soc., Providence, RI (1998)Google Scholar
  13. 13.
    Molahajloo S.: The heat kernel of the τ-twisted Laplacian. J. Pseudo-Differen. Oper. Appl. 1(3), 293–311 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (1987) [original Russian edition in Nauka, Moskva (1978)]Google Scholar
  15. 15.
    Weyl H.: Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46 (1927)CrossRefGoogle Scholar
  16. 16.
    Wong M.W.: Weyl Transforms. Springer, Berlin (1998)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität Wien, NuHAGViennaAustria
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations