Weighted integrals of Wigner representations

  • Paolo Boggiatto
  • Bui Kien Cuong
  • Giuseppe De Donno
  • Alessandro Oliaro


We consider in this paper Wigner representations Wigτ depending on a parameter \({\tau\in[0,1]}\) as defined in Boggiatto et al. (Trans Am Math Soc 362:4955–4981, 2010). Integrating these forms with respect to the parameter τ against a weight function Φ we obtain a new class of time–frequency representations WigΦ. We give basic properties of WigΦ as subclasses of the general Cohen class.


Time–frequency representation τ-Wigner distribution Cohen class 

Mathematics Subject Classification (2000)

42B10 47A07 47B38 47G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boggiatto P., De Donno G., Oliaro A.: Time–frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362(9), 4955–4981 (2010)MATHMathSciNetGoogle Scholar
  2. 2.
    Boggiatto P., De Donno G., Oliaro A.: A class of quadratic time–frequency representations based on the short-time Fourier transform. Oper. Theory Adv. Appl. 172, 235–249 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boggiatto P., De Donno G., Oliaro A.: Uncertainty principle, positivity and L p-boundedness for generalized spectrograms. J. Math. Anal. Appl. 355(1), 93–112 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cohen L.: Time–frequency distributions—a review. Proc. IEEE 77(7), 941–981 (1989)CrossRefGoogle Scholar
  5. 5.
    Cohen L.: Time–frequency Analysis. Prentice Hall Signal Proceeding Series, New Jersey (1995)Google Scholar
  6. 6.
    Gatteschi, L.: Funzioni Speciali, Unione Tipografica Editrice Torinese (1973)Google Scholar
  7. 7.
    Gröchenig K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)MATHGoogle Scholar
  8. 8.
    Janssen A.J.A.: Proof of a conjecture on the supports of Wigner distributions. J. Fourier Anal. Appl. 4(6), 723–726 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lieb E.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys. 31(3), 594–599 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mohammed, A., Wong, M.W.: Rihaczek transform and pseudo-differential operators. In: Pseudo-Differential Operators: Partial Differential Equations and Time–Frequency Analysis. Fields Institute Communication, vol. 52, pp. 375–382. American Mathematical Society, Providence (2007)Google Scholar
  11. 11.
    Toft, J.: Hudson’s theorem and rank one operators in Weyl calculus. In: Pseudo-Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol. 164, pp. 153–159. Birkhäuser, Basel (2006)Google Scholar
  12. 12.
    Shubin M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001)MATHGoogle Scholar
  13. 13.
    Wong M.W.: Weyl Transforms. Springer, Berlin (1998)MATHGoogle Scholar
  14. 14.
    Wong, M.W.: Symmetry-breaking for Wigner transform and L p-boundedness of Weyl transform, In: Ashino, R., Boggiatto, P., Wong, M.W. (eds.). Operational Therotical Advances and Applications: Advances in Pseudo-differential Operators, vol. 155, pp. 107–116. Birkhäuser, Basel (2004)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Paolo Boggiatto
    • 1
  • Bui Kien Cuong
    • 2
  • Giuseppe De Donno
    • 1
  • Alessandro Oliaro
    • 1
  1. 1.Department of MathematicsUniversity of TurinTurinItaly
  2. 2.Higher Education DepartmentHanoi Pedagogical University 2HanoiVietnam

Personalised recommendations