Advertisement

The Microbiota in Hematologic Malignancies

  • Yajing Song
  • Bryan Himmel
  • Lars Öhrmalm
  • Peter GyarmatiEmail author
Leukemia (PH Wiernik, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Leukemia

Opinion statement

There are approximately 1.2 million new hematologic malignancy cases resulting in ~ 690,000 deaths each year worldwide, and hematologic malignancies remain the most commonly occurring cancer in children. Even though advances in anticancer treatment regimens in recent decades have considerably improved survival rates, their cytotoxic effects and the resulting long-term complications pose a significant burden on the patients and the health care system. Therefore, non-toxic treatment modalities are needed to decrease side effects. The human body is the host to approximately 40 trillion microbes, known as the human microbiota. The large majority of the microbiota is located in the gastrointestinal tract, and is primarily composed of bacteria. The microbiota plays several important physiological roles, ranging from digestive functions to immunological and neural development. Investigating the microbiota in patients with hematologic malignancies has several important implications. The microbiota affects hematopoiesis, and influences the efficacies of chemotherapy and antimicrobial treatments. Determination of the microbiota composition and diversity could be an important part of risk stratification in the future, and may also take part to personalize antimicrobial treatments. Modulation of the microbiota via probiotics or fecal transplant can potentially be involved in reducing side effects of chemotherapy, and eliminating multiple drug resistant strains in patients with hematologic malignancies.

Keywords

Microbiota Metagenomics Bloodstream infection Hematologic malignancies Leukemia 

Notes

Compliance with Ethical Standards

Conflict of Interest

Yajing Song declares that she has no conflict of interest. Bryan Himmel declares that he has no conflict of interest. Lars Öhrmalm declares that he has no conflict of interest. Peter Gyarmati declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179 A thorough introduction and review on the microbiota and its physiological functions.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    National Research Council (US) Committee on Metagenomics: Challenges and Functional Applications. The new science of metagenomics: revealing the secrets of our microbial planet. Washington (DC): National Academies Press (US); 2007. 1, Why Metagenomics?Google Scholar
  3. 3.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Opens external link in new window. Nucleic Acids Res. 2013;41(D1):D590–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y. etal. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(Database issue):D633–42.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43(Database issue):D571–7.CrossRefGoogle Scholar
  7. 7.
    Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy [published correction appears in Nucleic Acids Res. 2015;43(7):3872]. Nucleic Acids Res. 2014;42(Database issue):D553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–79.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014;15(3):374–81.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Josefsdottir KS, Baldridge MT, Kadmon CS, King KY. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood. 2017;129:729–39.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    • Staffas A, Burgos da Silva M, Slingerland AE, Lazrak A, Bare CJ, Holman CD, et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host Microbe. 2018;23(4):447–457.e4 A study highlighting the importance of the microbiota in hematopoiesis.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, et al. Associations of autoimmunity, immunodeficiency, lymphomagenesis, and gut microbiota in mice with knockins for a pathogenic autoantibody. Am J Pathol. 2017;187(9):2020–33.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Song Y, Gyarmati P. Bacterial translocation in acute lymphocytic leukemia. PLoS One. 2019;14(4):e0214526.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol. 2011;77(10):3219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vijayvargiya P, Jeraldo PR, Thoendel MJ, Greenwood-Quaintance KE, Esquer Garrigos Z, Sohail MR, et al. Application of metagenomic shotgun sequencing to detect vector-borne pathogens in clinical blood samples. PLoS One. 2019;14(10):e0222915.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dulanto Chiang A, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics. J Infect Dis. 2019; pii: jiz151.Google Scholar
  19. 19.
    Song Y, Giske CG, Gille-Johnson P, Emanuelsson O, Lundeberg J, Gyarmati P. Nuclease-assisted suppression of human DNA background in sepsis. PLoS One. 2014;9(7):e103610.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Song Y, Gyarmati P. Optimized detection of bacteria in bloodstream infections. PLoS One. 2019;14(6):e0219086.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gijavanekar C, Strych U, Fofanov Y, Fox GE. Willson RC Rare target enrichment for ultrasensitive PCR detection using cot-rehybridization and duplex-specific nuclease. Anal Biochem. 2012;421(1):81–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ten Hoopen P, Finn RD, Bongo LA, Corre E, Fosso B, Meyer F, et al. The metagenomic data life-cycle: standards and best practices. Gigascience. 2017;6(8):1–11.PubMedPubMedCentralGoogle Scholar
  23. 23.
    •• Hakim H, Dallas R, Wolf J, Tang L, Schultz-Cherry S, Darling V, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia. Clin Infect Dis. 2018;67(4):541–8 A comprehensive study of the gut microbiome of pediatric ALL patients, indicating gut microbiota composition as a predictor for infectious outcome during chemotherapy.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bai L, Zhou P, Li D, Ju X. Changes in the gastrointestinal microbiota of children with acute lymphoblastic leukaemia and its association with antibiotics in the short term. J Med Microbiol. 2017.  https://doi.org/10.1099/jmm.0.000568.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Han L, Zhang H, Chen S, Zhou L, Li Y, Zhao K, et al. Intestinal microbiota can predict aGVHD following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;pii: S1083–8791(19)30438–0.Google Scholar
  26. 26.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9(1):e84689.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32(11):1720–4.CrossRefGoogle Scholar
  29. 29.
    Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezem M, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013;7(4):707–17.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Nearing JT, Connors J, Whitehouse S, Van Limbergen J, Macdonald T, Kulkarni K, et al. Infectious complications are associated with alterations in the gut microbiome in pediatric patients with acute lymphoblastic leukemia. Front Cell Infect Microbiol. 2019;9:28.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, Pot B, et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J. 2016;10(6):1456–70.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rashidi A, Kaiser T, Graiziger C, Holtan SG, Rehman TU, Weisdorf DJ, et al. Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy. Leukemia. 2019.  https://doi.org/10.1038/s41375-019-0547-0.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Montassier E, Gastinne T, Vangay P, Al-Ghalith GA. Bruley des Varannes S, Massart S, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. 2015;42(5):515–28.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shelburne SA, Ajami NJ, Chibucos MC, Beird HC, Tarrand J, Galloway-Peña J, et al. Implementation of a pan-genomic approach to investigate holobiont-infecting microbe interaction: a case report of a leukemic patient with invasive mucormycosis. PLoS One. 2015;10(11):e0139851.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49(2):262–70.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kaysen A, Heintz-Buschart A, Muller EEL, Narayanasamy S, Wampach L, Laczny CC, et al. Integrated meta-omic analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic hematopoietic stem cell transplantation. Transl Res. 2017;186:79–94.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Galloway-Peña JR, Smith DP, Sahasrabhojane P, Ajami NJ, Wadsworth WD, Daver NG, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer. 2016;122(14):2186–96.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Galloway-Peña JR, Smith DP, Sahasrabhojane P, Wadsworth WD, Fellman BM, Ajami NJ, et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Med. 2017;9(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kelly MS, Ward DV, Severyn CJ, Arshad M, Heston SM, Jenkins K, et al. Gut colonization preceding mucosal barrier injury bloodstream infection in pediatric hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant. 2019;pii: S1083–8791(19)30451–3.Google Scholar
  40. 40.
    Bindels LB, Neyrinck AM, Salazar N, Taminiau B, Druart C, Muccioli GG, et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice. PLoS One. 2015;10(6):e0131009.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    de Naurois J, Novitzky-Basso I, Gill MJ, Marti FM, Cullen MH, Roila F, et al. Management of febrile neutropenia: ESMO clinical practice guidelines. Ann Oncol. 2010;21. Suppl. 2010;5:v252–6.Google Scholar
  42. 42.
    Klastersky J, Ameye L, Maertens J, Georgala A, Muanza F, Aoun M, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nørgaard M, Larsson H, Pedersen G, Schonheyder HC, Sorensen HT. Risk of bacteraemia and mortality in patients with haematological malignancies. Clin Microbiol Infect. 2006;12:217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hersh EM, Bodey GP, Nies BA, Freireich EJ. Causes of death in acute leukemia: a ten-year study of 414 patients from 1954 – 1963. JAMA. 1965;193:105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Elting LS, Rubenstein EB, Rolston KV, Bodey GP. Outcomes of bacteremia in patients with cancer and neutropenia: observations from two decades of epidemiological and clinical trials. Clin Infect Dis. 1997;25:247–59.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Viscoli C, Bruzzi P, Castagnola E, Boni L, Calandra T, Gaya H, et al. Factors associated with bacteraemia in febrile, granulocytopenic cancer patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer. 1994;30A:430–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Klastersky J. Science and pragmatism in the treatment and prevention of neutropenic infection. J Antimicrob Chemother. 1998;41(Suppl D):13–24.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Feld R. Bloodstream infections in cancer patients with febrile neutropenia. Int J Antimicrob Agents. 2008;32(Suppl 1):S30–3.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ramphal R. Changes in the etiology of bacteremia in febrile neutropenic patients and the susceptibilities of the currently isolated pathogens. Clin Infect Dis. 2004;39(Suppl 1):S25–31.CrossRefGoogle Scholar
  50. 50.
    Rath S, Rud T, Karch A, Pieper DH, Vital M. Pathogenic functions of host microbiota. Microbiome. 2018;6:174.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11(7):445–56.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gyarmati P, Kjellander C, Aust C, Song Y, Öhrmalm L, Giske CG. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep. 2016;6:23532.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wei W, Sun W, Yu S, Yang Y, Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma. 2016;57(10):2401–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Piovan E, Tosello V, Amadori A, Zanovello P. Chemotactic cues for NOTCH1-dependent leukemia. Front Immunol. 2018;9:633.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wong M, Barqasho B, Ohrmalm L, Tolfvenstam T, Nowak P. Microbial translocation contribute to febrile episodes in adults with chemotherapy-induced neutropenia. PLoS One. 2013;8(7):e68056.  https://doi.org/10.1371/journal.pone.0068056.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Min YW, Rhee PL. The role of microbiota on the gut immunology. Clin Ther. 2015;37(5):968–75.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10(1):89.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wiest R, Rath HC. Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut. Best Pract Res Clin Gastroenterol. 2003;7(3):397–425.CrossRefGoogle Scholar
  60. 60.
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schniedel Y, Zimmerli S. Common invasive fungal diseases. Swiss Med Wkly. 2016;146:w14281.Google Scholar
  62. 62.
    van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst. 1974;52:401–4.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lähteenmäki K, Wacklin P, Taskinen M, Tuovinen E, Lohi O, Partanen J, et al. Haematopoietic stem cell transplantation induces severe dysbiosis in intestinal microbiota of paediatric ALL patients. Bone Marrow Transplant. 2017;52(10):1479–82.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, et al. Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome. 2019;7(1):131.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kusakabe S, Fukushima K, Maeda T, Motooka D, Nakamura S, Fujita J, et al. Pre- and post-serial metagenomic analysis of gut microbiota as a prognostic factor in patients undergoing haematopoietic stem cell transplantation. Br J Haematol. 2019 Sep 30.  https://doi.org/10.1111/bjh.16205.
  66. 66.
    Abel GA, Klepin HD. Frailty and the management of hematologic malignancies. Blood. 2018;131(5):515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. Clin Oncol. 2017;35(15):1650–9.CrossRefGoogle Scholar
  68. 68.
    Khoruts A, Hippen KL, Lemire AM, Holtan SG, Knights D, Young JH. Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota. Transl Res. 2017;179:116–25.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tunyapanit W, Chelae S, Laoprasopwattana K. Does ciprofloxacin prophylaxis during chemotherapy induce intestinal microflora resistance to ceftazidime in children with cancer? J Infect Chemother. 2018;24(5):358–62.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Montassier E, Al-Ghalith GA, Ward T, Corvec S, Gastinne T, Potel G, et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med. 2016;8(1):49.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Montassier E, Batard E, Massart S, Gastinne T, Carton T, Caillon J, et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb Ecol. 2014;67(3):690–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Biagi E, Zama D, Rampelli S, Turroni S, Brigidi P, Consolandi C, et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC Med Genet. 2019;12(1):49.Google Scholar
  73. 73.
    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, et al. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 2019. pii: S1550–4131(19)30449–8.Google Scholar
  75. 75.
    Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, Galindo-Delgado P, Contreras-Ochoa C, Lagunas-Martínez A, et al. Probiotic supplementation decreases chemotherapy-induced gastrointestinal side effects in patients with acute leukemia. J Pediatr Hematol Oncol. 2019 Apr 24.  https://doi.org/10.1097/MPH.0000000000001497.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bindels LB, Beck R, Schakman O, Martin JC, De Backer F, Sohet FM, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS On. 2012;7(6):e37971.CrossRefGoogle Scholar
  77. 77.
    Yamamoto ML, Maier I, Dang AT, Berry D, Liu J, Ruegger PM, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013;73(14):4222–32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sulik-Tyszka B, Snarski E, Niedźwiedzka M, Augustyniak M, Myhre TN, Kacprzyk A, et al. Experience with Saccharomyces boulardii probiotic in oncohaematological patients. Probiotics Antimicrob Proteins. 2018;10(2):350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Avcin SL, Pokorn M, Kitanovski L, Premru MM, Jazbec J. Bifidobacterium breve sepsis in child with high-risk acute lymphoblastic leukemia. Emerg Infect Dis. 2015;21(9):1674–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wardill HR, Van Sebille YZA, Ciorba MA, Bowen JM. Prophylactic probiotics for cancer therapy-induced diarrhoea: a meta-analysis. Curr Opin Support Palliat Care. 2018;12(2):187–97.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of alpha beta T cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology. 1993;79(1):32–7.PubMedPubMedCentralGoogle Scholar
  82. 82.
    McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases, Volume 66, Issue 7, 1 April 2018, Pages e1–e48.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rashidi A, Zhu Z, Kaiser T, Manias DA, Holtan SG, Rehman TU, et al. Vancomycin-resistance gene cluster, vanC, in the gut microbiome of acute leukemia patients undergoing intensive chemotherapy. PLoS One. 2019;14(10):e0223890.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Innes AJ, Mullish BH, Fernando F, Adams G, Marchesi JR, Apperley JF, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone Marrow Transplant. 2017;52(10):1452–4.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Biliński J, Grzesiowski P, Muszyński J, Wróblewska M, Mądry K, Robak K, et al. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp. 2016;64(3):255–8.CrossRefGoogle Scholar
  86. 86.
    de Castro CG Jr, Ganc AJ, Ganc RL, Petrolli MS, Hamerschlack N. Fecal microbiota transplant after hematopoietic SCT: report of a successful case. Bone Marrow Transplant. 2015;50(1):145.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kaito S, Toya T, Yoshifuji K, Kurosawa S, Inamoto K, Takeshita K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv. 2018;2(22):3097–101.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yajing Song
    • 1
  • Bryan Himmel
    • 2
  • Lars Öhrmalm
    • 3
  • Peter Gyarmati
    • 1
    Email author
  1. 1.Department of Cancer Biology and PharmacologyUniversity of Illinois College of Medicine at PeoriaPeoriaUSA
  2. 2.University of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.Department of MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations