Advertisement

Current Update on the Molecular Biology of Cutaneous Sarcoma: Dermatofibrosarcoma Protuberans

  • Takeshi Iwasaki
  • Hidetaka Yamamoto
  • Yoshinao OdaEmail author
Skin Cancer (T Ito, Section Editor)
  • 39 Downloads
Part of the following topical collections:
  1. Topical Collection on Skin Cancer

Opinion statement

Cutaneous sarcoma is a group of malignant mesenchymal tumors primarily involving the dermis, and it is characterized by extreme clinicopathological heterogeneity. Although its occurrence rate is rare, dermatofibrosarcoma protuberans (DFSP) is one of the most common types of dermal sarcoma. DFSP grows slowly and tends to relapse locally after inadequate resection. There are various histological variants of DFSP tumors and it often mimics benign lesions such as dermatofibroma and scar, which make accurate diagnosis difficult and delayed, and some cases progress to the stage where the tumor is unresectable. Recent advancements in cancer genetics and molecular biology methods have elucidated the COL1A1-PDGFB fusion gene, some novel fusion gene variants and pathways related to DFSP pathogenesis that have resulted in the evolution of cutaneous sarcoma diagnosis and treatment. For example, some clinical studies have confirmed the efficacy of imatinib methylate, an αPDGFR-targeted therapy for unresectable or metastatic DFSP. The present review summarizes recent updates in DFSP research, diagnostics, and treatment.

Keywords

Dermatofibrosarcoma protuberans (DFSP) Molecular therapy Imatinib mesylate Fusion genes 

Notes

Acknowledgements

We are very grateful to Dr. Y. Yamada, K. Kohashi, and I. Kinoshita at Kyushu University Hospital for helpful discussions. We also thank Dr. Y. Ohshiro at Matsuyama Red Cross Hospital for kindly providing the clinical samples.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Rouhani P, Fletcher CD, Devesa SS, Toro JR. Cutaneous soft tissue sarcoma incidence patterns in the U.S. : an analysis of 12,114 cases. Cancer. 2008;113(3):616–27.  https://doi.org/10.1002/cncr.23571.CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffmann EI. Über das knollentreibende Fibrosarkom der Haut (Dermatofibrosarkoma protuberans). Dermatology. 1925;43(1–2):1–28.CrossRefGoogle Scholar
  3. 3.
    Llombart B, Serra-Guillen C, Monteagudo C, Lopez Guerrero JA, Sanmartin O. Dermatofibrosarcoma protuberans: a comprehensive review and update on diagnosis and management. Semin Diagn Pathol. 2013;30(1):13–28.  https://doi.org/10.1053/j.semdp.2012.01.002.CrossRefPubMedGoogle Scholar
  4. 4.
    Kim HJ, Lee JY, Kim SH, Seo YJ, Lee JH, Park JK, et al. Stromelysin-3 expression in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans: comparison with factor XIIIa and CD34. Br J Dermatol. 2007;157(2):319–24.  https://doi.org/10.1111/j.1365-2133.2007.08033.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Kahn HJ, Fekete E, From L. Tenascin differentiates dermatofibroma from dermatofibrosarcoma protuberans: comparison with CD34 and factor XIIIa. Hum Pathol. 2001;32(1):50–6.  https://doi.org/10.1053/hupa.2001.21137.CrossRefPubMedGoogle Scholar
  6. 6.
    West RB, Harvell J, Linn SC, Liu CL, Prapong W, Hernandez-Boussard T, et al. Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol. 2004;28(8):1063–9.CrossRefGoogle Scholar
  7. 7.
    Criscito MC, Martires KJ, Stein JA. Prognostic factors, treatment, and survival in dermatofibrosarcoma protuberans. JAMA Dermatol. 2016;152(12):1365–71.  https://doi.org/10.1001/jamadermatol.2016.1886.CrossRefPubMedGoogle Scholar
  8. 8.
    Brenner W, Schaefler K, Chhabra H, Postel A. Dermatofibrosarcoma protuberans metastatic to a regional lymph node. Report of a case and review. Cancer. 1975;36(5):1897–902.CrossRefGoogle Scholar
  9. 9.
    Jha P, Moosavi C, Fanburg-Smith JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the armed forces Institute of Pathology, in honor of Dr. Franz M Enzinger. Ann Diagn Pathol. 2007;11(2):81–8.  https://doi.org/10.1016/j.anndiagpath.2006.12.010.CrossRefPubMedGoogle Scholar
  10. 10.
    Zamecnik M, Michal M, Chlumska A. Composite dermatofibrosarcoma protuberans-giant cell fibroblastoma recurring as Bednar tumor-giant cell fibroblastoma with mucoid lakes and with amputation neuroma. Cesk Patol. 2002;38(4):173–7.PubMedGoogle Scholar
  11. 11.
    Bednar B. Storiform neurofibromas of the skin, pigmented and nonpigmented. Cancer. 1957;10(2):368–76.CrossRefGoogle Scholar
  12. 12.
    Dupree WB, Langloss JM, Weiss SW. Pigmented dermatofibrosarcoma protuberans (Bednar tumor). A pathologic, ultrastructural, and immunohistochemical study. Am J Surg Pathol. 1985;9(9):630–9.CrossRefGoogle Scholar
  13. 13.
    Suehara Y, Yazawa Y, Hitachi K. Metastatic Bednar tumor (pigmented dermatofibrosarcoma protuberans) with fibrosarcomatous change: a case report. J Orthop Sci. 2004;9(6):662–5.  https://doi.org/10.1007/s00776-004-0831-2.CrossRefPubMedGoogle Scholar
  14. 14.
    Kagoura M, Toyoda M, Nagahori H, Makino T, Morohashi M. An ultrastructural and immunohistochemical study of pigmented dermatofibrosarcoma protuberans (Bednar tumor). Eur J Dermatol. 1999;9(5):366–9.PubMedGoogle Scholar
  15. 15.
    Seo IS, Goheen M, Min KW. Bednar tumor: report of a case with immunohistochemical and ultrastructural study. Ultrastruct Pathol. 2003;27(3):205–10.CrossRefGoogle Scholar
  16. 16.
    Bakry O, Attia A. Atrophic dermatofibrosarcoma protuberans. J Dermatol Case Rep. 2012;6(1):14–7.  https://doi.org/10.3315/jdcr.2012.1089.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lambert WC, Abramovits W, Gonzalez-Sevra A, Souchon E, Schwartz RA, Little WP Jr. Dermatofibrosarcoma non-protuberans: description and report of five cases of a morpheaform variant of dermatofibrosarcoma. J Surg Oncol. 1985;28(1):7–11.CrossRefGoogle Scholar
  18. 18.
    Martin L, Combemale P, Dupin M, Chouvet B, Kanitakis J, Bouyssou-Gauthier ML, et al. The atrophic variant of dermatofibrosarcoma protuberans in childhood: a report of six cases. Brit J Dermatol. 1998;139(4):719–25.Google Scholar
  19. 19.
    Marini M, Saponaro A, Magarinos G, de Baldrich A, Lynch P, Remorino L. Congenital atrophic dermatofibrosarcoma protuberans. Int J Dermatol. 2001;40(7):448–50.CrossRefGoogle Scholar
  20. 20.
    Sabater-Marco V, Perez-Valles A, Berzal-Cantalejo F, Rodriguez-Serna M, Martinez-Diaz F, Martorell-Cebollada M. Sclerosing dermatofibrosarcoma protuberans (DFSP): an unusual variant with focus on the histopathologic differential diagnosis. Int J Dermatol. 2006;45(1):59–62.  https://doi.org/10.1111/j.1365-4632.2004.02340.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Hattori H. Nodular sclerotic change in dermatofibrosarcoma protuberans: a potential diagnostic problem. Br J Dermatol. 2003;148(2):357–60.CrossRefGoogle Scholar
  22. 22.
    Diaz-Cascajo C, Weyers W, Borghi S. Sclerosing dermatofibrosarcoma protuberans. J Cutan Pathol. 1998;25(8):440–4.CrossRefGoogle Scholar
  23. 23.
    Tran P, Henderson GP, McLemore M. An unusual clinical presentation of myxoid dermatofibrosarcoma protuberans with a prominent vasculature: a potential pitfall in the diagnosis of myxoid soft tissue tumors. J Cutan Pathol. 2018;45(6):419–22.  https://doi.org/10.1111/cup.13130.CrossRefPubMedGoogle Scholar
  24. 24.
    Sato N, Kimura K, Tomita Y. Recurrent dermatofibrosarcoma protuberans with myxoid and fibrosarcomatous changes paralleled by loss of CD34 expression. J Dermatol. 1995;22(9):665–72.CrossRefGoogle Scholar
  25. 25.
    Zamecnik M, Michal M. Myxoid variant of dermatofibrosarcoma protuberans with fibrosarcomatous areas. Zentralbl Pathol. 1993;139(4–5):373–6.PubMedGoogle Scholar
  26. 26.
    Mentzel T, Scharer L, Kazakov DV, Michal M. Myxoid dermatofibrosarcoma protuberans: clinicopathologic, immunohistochemical, and molecular analysis of eight cases. Am J Dermatopathol. 2007;29(5):443–8.  https://doi.org/10.1097/DAD.0b013e318145413c.CrossRefPubMedGoogle Scholar
  27. 27.
    Calonje E, Fletcher CD. Myoid differentiation in dermatofibrosarcoma protuberans and its fibrosarcomatous variant: clinicopathologic analysis of 5 cases. J Cutan Pathol. 1996;23(1):30–6.CrossRefGoogle Scholar
  28. 28.
    Al-Zaid T, Khoja H. Acral dermatofibrosarcoma protuberans with myoid differentiation: a report of 2 cases. J Cutan Pathol. 2017;44(9):794–7.  https://doi.org/10.1111/cup.12982.CrossRefPubMedGoogle Scholar
  29. 29.
    Kerob D, Porcher R, Verola O, Dalle S, Maubec E, Aubin F, et al. Imatinib mesylate as a preoperative therapy in dermatofibrosarcoma: results of a multicenter phase II study on 25 patients. Clin Cancer Res. 2010;16(12):3288–95.  https://doi.org/10.1158/1078-0432.CCR-09-3401.CrossRefPubMedGoogle Scholar
  30. 30.
    Sanz-Trelles A, Ayala-Carbonero A, Rodrigo-Fernandez I, Weil-Lara B. Leiomyomatous nodules and bundles of vascular origin in the fibrosarcomatous variant of dermatofibrosarcoma protuberans. J Cutan Pathol. 1998;25(1):44–9.CrossRefGoogle Scholar
  31. 31.
    Banerjee SS, Harris M, Eyden BP, Hamid BN. Granular cell variant of dermatofibrosarcoma protuberans. Histopathology. 1990;17(4):375–8.CrossRefGoogle Scholar
  32. 32.
    Wrotnowski U, Cooper PH, Shmookler BM. Fibrosarcomatous change in dermatofibrosarcoma protuberans. Am J Surg Pathol. 1988;12(4):287–93.CrossRefGoogle Scholar
  33. 33.
    Llombart B, Monteagudo C, Sanmartin O, Lopez-Guerrero JA, Serra-Guillen C, Poveda A, et al. Dermatofibrosarcoma protuberans: a clinicopathological, immunohistochemical, genetic (COL1A1-PDGFB), and therapeutic study of low-grade versus high-grade (fibrosarcomatous) tumors. J Am Acad Dermatol. 2011;65(3):564–75.  https://doi.org/10.1016/j.jaad.2010.06.020.CrossRefPubMedGoogle Scholar
  34. 34.
    Lyu A, Wang Q. Dermatofibrosarcoma protuberans: a clinical analysis. Oncol Lett. 2018;16(2):1855–62.  https://doi.org/10.3892/ol.2018.8802.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hayakawa K, Matsumoto S, Ae K, Tanizawa T, Gokita T, Funauchi Y, et al. Risk factors for distant metastasis of dermatofibrosarcoma protuberans. J Orthop Traumatol. 2016;17(3):261–6.  https://doi.org/10.1007/s10195-016-0415-x.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sasaki M, Ishida T, Horiuchi H, MacHinami R. Dermatofibrosarcoma protuberans: an analysis of proliferative activity, DNA flow cytometry and p53 overexpression with emphasis on its progression. Pathol Int. 1999;49(9):799–806.CrossRefGoogle Scholar
  37. 37.
    Takahira T, Oda Y, Tamiya S, Yamamoto H, Kawaguchi K, Kobayashi C, et al. Microsatellite instability and p53 mutation associated with tumor progression in dermatofibrosarcoma protuberans. Hum Pathol. 2004;35(2):240–5.CrossRefGoogle Scholar
  38. 38.
    Hisaoka M, Okamoto S, Morimitsu Y, Tsuji S, Hashimoto H. Dermatofibrosarcoma protuberans with fibrosarcomatous areas. Molecular abnormalities of the p53 pathway in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Virchows Arch. 1998;433(4):323–9.CrossRefGoogle Scholar
  39. 39.
    Hiraki-Hotokebuchi Y, Yamada Y, Kohashi K, Yamamoto H, Endo M, Setsu N, et al. Alteration of PDGFRbeta-Akt-mTOR pathway signaling in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Hum Pathol. 2017;67:60–8.  https://doi.org/10.1016/j.humpath.2017.07.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Cleven AH, Al Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP, et al. Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Mod Pathol. 2016;29(9):1113.  https://doi.org/10.1038/modpathol.2016.103.CrossRefPubMedGoogle Scholar
  41. 41.
    Pekmezci M, Cuevas-Ocampo AK, Perry A, Horvai AE. Significance of H3K27me3 loss in the diagnosis of malignant peripheral nerve sheath tumors. Mod Pathol. 2017;30(12):1710–9.  https://doi.org/10.1038/modpathol.2017.97.CrossRefPubMedGoogle Scholar
  42. 42.
    Shimizu A, O'Brien KP, Sjoblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type I alpha 1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.PubMedGoogle Scholar
  43. 43.
    McArthur G. Molecularly targeted treatment for dermatofibrosarcoma protuberans. Semin Oncol. 2004;31(2):30–6.  https://doi.org/10.1053/j.seminoncol.2004.03.038.CrossRefPubMedGoogle Scholar
  44. 44.
    • Nakamura I, Kariya Y, Okada E, Yasuda M, Matori S, Ishikawa O, et al. A novel chromosomal translocation associated with COL1A2-PDGFB gene fusion in dermatofibrosarcoma protuberans: PDGF expression as a new diagnostic tool. JAMA Dermatol. 2015;151(12):1330–7.  https://doi.org/10.1001/jamadermatol.2015.2389. Reporting the novel fusion gene of DFSP; COL1A2-PDGFB.CrossRefPubMedGoogle Scholar
  45. 45.
    • Dadone-Montaudie B, Alberti L, Duc A, Delespaul L, Lesluyes T, Perot G, et al. Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Mod Pathol. 2018;31(11):1683–93.  https://doi.org/10.1038/s41379-018-0089-4. Next generation sequencing study reporting the novel fusion gene of DFSP; EMILIN2-PDGFD.CrossRefPubMedGoogle Scholar
  46. 46.
    • Dickson BC, Hornick JL, CDM F, Demicco EG, Howarth DJ, Swanson D, et al. Dermatofibrosarcoma protuberans with a novel COL6A3-PDGFD fusion gene and apparent predilection for breast. Genes Chromosom Cancer. 2018;57(9):437–45.  https://doi.org/10.1002/gcc.22663. Next generation sequencing study reporting the novel fusion gene of DFSP; COL6A3-PDGFD.CrossRefPubMedGoogle Scholar
  47. 47.
    Eilers G, Czaplinski JT, Mayeda M, Bahri N, Tao D, Zhu M, et al. CDKN2A/p16 loss implicates CDK4 as a therapeutic target in imatinib-resistant dermatofibrosarcoma protuberans. Mol Cancer Ther. 2015;14(6):1346–53.  https://doi.org/10.1158/1535-7163.MCT-14-0793.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Saab J, Rosenthal IM, Wang L, Busam KJ, Nehal KS, Dickson MA, et al. Dermatofibrosarcoma protuberans-like tumor with COL1A1 copy number gain in the absence of t(17;22). Am J Dermatopathol. 2017;39(4):304–9.  https://doi.org/10.1097/DAD.0000000000000746.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Veronese F, Boggio P, Tiberio R, Gattoni M, Fava P, Caliendo V, et al. Wide local excision vs. Mohs Tubingen technique in the treatment of dermatofibrosarcoma protuberans: a two-centre retrospective study and literature review. J Eur Acad Dermatol Venereol. 2017;31(12):2069–76.  https://doi.org/10.1111/jdv.14378.CrossRefPubMedGoogle Scholar
  50. 50.
    Mendenhall WM, Zlotecki RA, Scarborough MT. Dermatofibrosarcoma protuberans. Cancer. 2004;101(11):2503–8.  https://doi.org/10.1002/cncr.20678.CrossRefPubMedGoogle Scholar
  51. 51.
    Acosta AE, Velez CS. Dermatofibrosarcoma Protuberans. Curr Treat Options in Oncol. 2017;18(9):56.  https://doi.org/10.1007/s11864-017-0498-5.CrossRefGoogle Scholar
  52. 52.
    Ng A, Nishikawa H, Lander A, Grundy R. Chemosensitivity in pediatric dermatofibrosarcoma protuberans. J Pediatr Hematol Oncol. 2005;27(2):100–2.CrossRefGoogle Scholar
  53. 53.
    Suit H, Spiro I, Mankin HJ, Efird J, Rosenberg AE. Radiation in management of patients with dermatofibrosarcoma protuberans. J Clin Oncol. 1996;14(8):2365–9.  https://doi.org/10.1200/JCO.1996.14.8.2365.CrossRefPubMedGoogle Scholar
  54. 54.
    Sun LM, Wang CJ, Huang CC, Leung SW, Chen HC, Fang FM, et al. Dermatofibrosarcoma protuberans: treatment results of 35 cases. Radiother Oncol. 2000;57(2):175–81.CrossRefGoogle Scholar
  55. 55.
    Dagan R, Morris CG, Zlotecki RA, Scarborough MT, Mendenhall WM. Radiotherapy in the treatment of dermatofibrosarcoma protuberans. Am J Clin Oncol. 2005;28(6):537–9.CrossRefGoogle Scholar
  56. 56.
    Chen YT, Tu WT, Lee WR, Huang YC. The efficacy of adjuvant radiotherapy in dermatofibrosarcoma protuberans: a systemic review and meta-analysis. J Eur Acad Dermatol Venereol. 2016;30(7):1107–14.  https://doi.org/10.1111/jdv.13601.CrossRefPubMedGoogle Scholar
  57. 57.
    Lemm D, Mugge LO, Mentzel T, Hoffken K. Current treatment options in dermatofibrosarcoma protuberans. J Cancer Res Clin Oncol. 2009;135(5):653–65.  https://doi.org/10.1007/s00432-009-0550-3.CrossRefPubMedGoogle Scholar
  58. 58.
    Shimizu A, O'Brien KP, Sjoblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.PubMedGoogle Scholar
  59. 59.
    Ugurel S, Mentzel T, Utikal J, Helmbold P, Mohr P, Pfohler C, et al. Neoadjuvant imatinib in advanced primary or locally recurrent dermatofibrosarcoma protuberans: a multicenter phase II DeCOG trial with long-term follow-up. Clin Cancer Res. 2014;20(2):499–510.  https://doi.org/10.1158/1078-0432.CCR-13-1411.CrossRefPubMedGoogle Scholar
  60. 60.
    McArthur GA, Demetri GD, van Oosterom A, Heinrich MC, Debiec-Rychter M, Corless CL, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: imatinib target exploration consortium study B2225. J Clin Oncol. 2005;23(4):866–73.  https://doi.org/10.1200/JCO.2005.07.088.CrossRefPubMedGoogle Scholar
  61. 61.
    Stacchiotti S, Pedeutour F, Negri T, Conca E, Marrari A, Palassini E, et al. Dermatofibrosarcoma protuberans-derived fibrosarcoma: clinical history, biological profile and sensitivity to imatinib. Int J Cancer. 2011;129(7):1761–72.  https://doi.org/10.1002/ijc.25826.CrossRefPubMedGoogle Scholar
  62. 62.
    Oh E, Jeong HM, Kwon MJ, Ha SY, Park HK, Song JY, et al. Unforeseen clonal evolution of tumor cell population in recurrent and metastatic dermatofibrosarcoma protuberans. PLoS One. 2017;12(10):e0185826.  https://doi.org/10.1371/journal.pone.0185826.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kitagawa D, Yokota K, Gouda M, Narumi Y, Ohmoto H, Nishiwaki E, et al. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells. 2013;18(2):110–22.  https://doi.org/10.1111/gtc.12022.CrossRefPubMedGoogle Scholar
  64. 64.
    Fu Y, Kang H, Zhao H, Hu J, Zhang H, Li X, et al. Sunitinib for patients with locally advanced or distantly metastatic dermatofibrosarcoma protuberans but resistant to imatinib. Int J Clin Exp Med. 2015;8(5):8288–94.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Xiao W, Que Y, Peng R, Ding Y, Zhao J, Wen X, et al. A favorable outcome of advanced dermatofibrosarcoma protuberans under treatment with sunitinib after imatinib failure. Onco Targets Ther. 2018;11:2439–43.  https://doi.org/10.2147/OTT.S150235.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.  https://doi.org/10.1158/0008-5472.CAN-04-1443.CrossRefPubMedGoogle Scholar
  67. 67.
    Kamar FG, Kairouz VF, Sabri AN. Dermatofibrosarcoma protuberans (DFSP) successfully treated with sorafenib: case report. Clin Sarcoma Res. 2013;3(1):5.  https://doi.org/10.1186/2045-3329-3-5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Miyagawa T, Kadono T, Kimura T, Saigusa R, Yoshizaki A, Miyagaki T, et al. Pazopanib induced a partial response in a patient with metastatic fibrosarcomatous dermatofibrosarcoma protuberans without genetic translocations resistant to mesna, doxorubicin, ifosfamide and dacarbazine chemotherapy and gemcitabine-docetaxel chemotherapy. J Dermatol. 2017;44(3):e21–e2.  https://doi.org/10.1111/1346-8138.13717.CrossRefPubMedGoogle Scholar
  69. 69.
    Tsuchihashi K, Kusaba H, Yamada Y, Okumura Y, Shimokawa H, Komoda M, et al. Programmed death-ligand 1 expression is associated with fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mol Clin Oncol. 2017;6(5):665–8.  https://doi.org/10.3892/mco.2017.1197.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Osio A, Xu S, El Bouchtaoui M, Leboeuf C, Gapihan G, Lemaignan C, et al. EGFR is involved in dermatofibrosarcoma protuberans progression to high grade sarcoma. Oncotarget. 2018;9(9):8478–88.  https://doi.org/10.18632/oncotarget.23899.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bigby SM, Oei P, Lambie NK, Symmans PJ. Dermatofibrosarcoma protuberans: report of a case with a variant ring chromosome and metastases following pregnancy. J Cutan Pathol. 2006;33(5):383–8.  https://doi.org/10.1111/j.0303-6987.2006.00404.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Meng T, Shi XH, Wu SF, Luo YF, Wang XJ, Long X. Hormone receptors analysis in Chinese patients with dermatofibrosarcoma protuberans. J Surg Oncol. 2018;118:157–66.  https://doi.org/10.1002/jso.25117.CrossRefPubMedGoogle Scholar
  73. 73.
    Kreicher KL, Honda KS, Kurlander DE, Bordeaux JS. Hormone receptor expression in patients with dermatofibrosarcoma protuberans. J Am Acad Dermatol. 2016;75(6):1205–9.  https://doi.org/10.1016/j.jaad.2016.07.011.CrossRefPubMedGoogle Scholar
  74. 74.
    Stacchiotti S, Astolfi A, Gronchi A, Fontana A, Pantaleo MA, Negri T, et al. Evolution of dermatofibrosarcoma protuberans to DFSP-derived fibrosarcoma: an event marked by epithelial-mesenchymal transition-like process and 22q loss. Mol Cancer Res. 2016;14(9):820–9.  https://doi.org/10.1158/1541-7786.MCR-16-0068.CrossRefPubMedGoogle Scholar
  75. 75.
    Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17(9):2613–8.  https://doi.org/10.1158/1078-0432.CCR-10-2156.CrossRefPubMedGoogle Scholar
  76. 76.
    Holm K, Grabau D, Lovgren K, Aradottir S, Gruvberger-Saal S, Howlin J, et al. Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes. Mol Oncol. 2012;6(5):494–506.  https://doi.org/10.1016/j.molonc.2012.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Italiano A, Soria JC, Toulmonde M, Michot JM, Lucchesi C, Varga A, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.  https://doi.org/10.1016/S1470-2045(18)30145-1.CrossRefPubMedGoogle Scholar
  78. 78.
    Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25(10):2808–20 e4.  https://doi.org/10.1016/j.celrep.2018.11.035.
  79. 79.
    Dickson MA, Mahoney MR, Tap WD, D'Angelo SP, Keohan ML, Van Tine BA, et al. Phase II study of MLN8237 (Alisertib) in advanced/metastatic sarcoma. Ann Oncol. 2016;27(10):1855–60.  https://doi.org/10.1093/annonc/mdw281.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kanamori S, Kajihara I, Kanazawa-Yamada S, Otsuka-Maeda S, Ihn H. Expression of aurora kinase A expression in dermatofibrosarcoma protuberans. J Dermatol. 2018;45(4):507–8.  https://doi.org/10.1111/1346-8138.14235.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Takeshi Iwasaki
    • 1
  • Hidetaka Yamamoto
    • 1
  • Yoshinao Oda
    • 1
    Email author
  1. 1.Department of Anatomic Pathology, Graduate School of Medicine SciencesKyushu UniversityFukuokaJapan

Personalised recommendations