Advertisement

Immunotherapy Advances in Urothelial Carcinoma

  • Rohit K Jain
  • Travis Snyders
  • Lakshminarayanan Nandgoapal
  • Rohan Garje
  • Yousef Zakharia
  • Shilpa Gupta
Genitourinary Cancers (N Agarwal, Section Editor)
  • 135 Downloads
Part of the following topical collections:
  1. Topical Collection on Genitourinary Cancers

Opinion statement

Checkpoint inhibitors have monumentally transformed the treatment of metastatic urothelial carcinoma. While the efficacy and safety of the different agents are similar in platinum-refractory metastatic urothelial carcinoma, pembrolizumab is the only agent that was superior to chemotherapy in a randomized phase III trial. Pembrolizumab and atezolizumab are also approved as first-line therapies in cisplatin-ineligible metastatic urothelial carcinoma. Several immunotherapy trials are ongoing in non-metastatic setting to maximize responses upfront. Despite the promising responses with immunotherapy, majority of patients do not respond to monotherapy and combination approaches would be the path moving forward to maximize responses. In addition, novel therapies are needed for patients who progress on checkpoint inhibitors. There is still a lot to be done to better understand predictive biomarkers, optimal combination, and sequences to improve clinical outcomes in urothelial carcinoma.

Keywords

Urothelial carcinoma Immunotherapy Biomarkers Checkpoint inhibitors 

Notes

Compliance with Ethical Standards

Conflict of Interest

Rohit Jain declares that he has no conflict of interest.

Travis Snyders declares that he has no conflict of interest.

Lakshminarayanan Nandagopal declares that he has no conflict of interest.

Rohan Garje declares that he has no conflict of interest.

Yousef Zakharia has received compensation for participating on advisory boards for Pfizer, Novartis, Roche Diagnostics, Castle Biosciences, Exelixis, Eisai, Johnson & Johnson, and Amgen.

Shilpa Gupta has received research funding (paid to her institution) from Bristol-Myers Squibb; has received compensation for service on advisory boards from Exelixis, Janssen, ARMO, AstraZeneca, Merck, and Genentech; and has received compensation for service on speakers’ bureaus from Exelixis, Janssen, AstraZeneca, and Genentech.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. 1.
    Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.CrossRefGoogle Scholar
  2. 2.
    Brandau S, Suttmann H. Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement. Biomed Pharmacother. 2007;61(6):299–305.  https://doi.org/10.1016/j.biopha.2007.05.004.CrossRefPubMedGoogle Scholar
  3. 3.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.  https://doi.org/10.1038/nature12213.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med. 2016;375(18):1767–78.  https://doi.org/10.1056/NEJMra1514296.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med. 2015;373(16):1490–2.  https://doi.org/10.1056/NEJMp1510079.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.  https://doi.org/10.1016/S0140-6736(16)00561-4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    • Powles T, Duran I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.  https://doi.org/10.1016/S0140-6736(17)33297-X. Randomized phase 3 trial, comparing atezolizumab with chemotherapy comparing response rate and survival outcomes.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    •• Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med. 2017;376(11):1015–26.  https://doi.org/10.1056/NEJMoa1613683. Randomized phase 3 trial, comparing chemotherapy vs pembrolizumab, showing overall survival benefit with pembrolizumab.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQ, Juco J, et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 2017;18(2):212–20.  https://doi.org/10.1016/S1470-2045(17)30007-4.CrossRefPubMedGoogle Scholar
  10. 10.
    Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016;17(11):1590–8.  https://doi.org/10.1016/S1470-2045(16)30496-X.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.  https://doi.org/10.1016/S1470-2045(17)30065-7.CrossRefPubMedGoogle Scholar
  12. 12.
    Powles T, O'Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study. JAMA Oncol. 2017;3(9):e172411.  https://doi.org/10.1001/jamaoncol.2017.2411.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, et al. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J Clin Oncol. 2017;35(19):2117–24.  https://doi.org/10.1200/JCO.2016.71.6795.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19(1):51–64.  https://doi.org/10.1016/S1470-2045(17)30900-2.CrossRefPubMedGoogle Scholar
  15. 15.
    Galsky MD, Hahn NM, Rosenberg J, Sonpavde G, Hutson T, Oh WK, et al. Treatment of patients with metastatic urothelial cancer "unfit" for Cisplatin-based chemotherapy. J Clin Oncol. 2011;29(17):2432–8.  https://doi.org/10.1200/JCO.2011.34.8433.CrossRefPubMedGoogle Scholar
  16. 16.
    Li J, Juliar B, Yiannoutsos C, Ansari R, Fox E, Fisch MJ, et al. Weekly paclitaxel and gemcitabine in advanced transitional-cell carcinoma of the urothelium: a phase II Hoosier Oncology Group study. J Clin Oncol. 2005;23(6):1185–91.  https://doi.org/10.1200/jco.2005.05.089.CrossRefPubMedGoogle Scholar
  17. 17.
    De Santis M, Bellmunt J, Mead G, Kerst JM, Leahy M, Maroto P, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol. 2012;30(2):191–9.  https://doi.org/10.1200/jco.2011.37.3571.CrossRefPubMedGoogle Scholar
  18. 18.
    Gitlitz BJ, Baker C, Chapman Y, Allen HJ, Bosserman LD, Patel R, et al. A phase II study of gemcitabine and docetaxel therapy in patients with advanced urothelial carcinoma. Cancer. 2003;98(9):1863–9.  https://doi.org/10.1002/cncr.11726.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–92.  https://doi.org/10.1016/S1470-2045(17)30616-2. Phase 2 study showing overall response rate and survival outcomes of pembrolizumab in cisplatin-ineligible patients.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.  https://doi.org/10.1016/S0140-6736(16)32455-2. Phase 2 study showing overall response rate and survival outcomes of atezolizumab in cisplatin-ineligible patients.CrossRefPubMedGoogle Scholar
  21. 21.
    Necchi A, Briganti A, Raggi D, Giannatempo P, Mariani L, Messina A et al. Interim results from PURE-01: A phase 2, open-label study of neoadjuvant pembrolizumab (pembro) before radical cystectomy for muscle-invasive urothelial bladder carcinoma (MIUC). J Clin Oncol. 2018;36: 6_Suppl.Google Scholar
  22. 22.
    Powles T, Rodriguez-Vida A, Duran I, Crabb SJ, Heijden MSVD, Pous AF et al. A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in muscle invasive bladder cancer (ABACUS). J Clin Oncol. 2018;36:15_Suppl:4506-.Google Scholar
  23. 23.
    Gupta S, Agarwal N, Konety B, Weight C, Thyagarajan B, Murugan PJ et al. Phase II trial of neoadjuvant nivolumab with cisplatin and gemcitabine in muscle-invasive bladder cancer patients undergoing radical cystectomy. J Clin Oncol. 2018;36:6_Suppl.Google Scholar
  24. 24.
    Liakou CI, Narayanan S, Ng Tang D, Logothetis CJ, Sharma P. Focus on TILs: Prognostic significance of tumor infiltrating lymphocytes in human bladder cancer. Cancer Immun. 2007;7:10.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J Clin Oncol. 2016;34(26):3119–25.  https://doi.org/10.1200/JCO.2016.67.9761.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.  https://doi.org/10.1038/nrc3239.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.  https://doi.org/10.1158/1535-7163.MCT-14-0983.CrossRefPubMedGoogle Scholar
  28. 28.
    Boorjian SA, Sheinin Y, Crispen PL, Farmer SA, Lohse CM, Kuntz SM, et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(15):4800–8.  https://doi.org/10.1158/1078-0432.CCR-08-0731.CrossRefGoogle Scholar
  29. 29.
    Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA. The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 2016;28(8):411–9.  https://doi.org/10.1093/intimm/dxw019.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165(1):35–44.  https://doi.org/10.1016/j.cell.2016.02.065.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509–20.  https://doi.org/10.1056/NEJMoa1500596.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377(25):2500–1.  https://doi.org/10.1056/NEJMc1713444.CrossRefGoogle Scholar
  33. 33.
    Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017;18(1):248–62.  https://doi.org/10.1016/j.celrep.2016.12.019.CrossRefPubMedGoogle Scholar
  34. 34.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.  https://doi.org/10.1126/science.aaf1490.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Discov. 2017;7(3):264–76.  https://doi.org/10.1158/2159-8290.CD-16-0828.CrossRefPubMedGoogle Scholar
  36. 36.
    Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–20.  https://doi.org/10.1038/nature24473.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol. 2018;29(4):1030–6.  https://doi.org/10.1093/annonc/mdy022.CrossRefPubMedGoogle Scholar
  38. 38.
    Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer Ther. 2017;16(11):2598–608.  https://doi.org/10.1158/1535-7163.MCT-17-0386.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Aggen DH, Drake CG. Biomarkers for immunotherapy in bladder cancer: a moving target. J Immunother Cancer. 2017;5(1):94.  https://doi.org/10.1186/s40425-017-0299-1.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cancer Genome Atlas Research N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22.  https://doi.org/10.1038/nature12965.CrossRefGoogle Scholar
  41. 41.
    Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152–65.  https://doi.org/10.1016/j.ccr.2014.01.009.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rohit K Jain
    • 1
  • Travis Snyders
    • 2
  • Lakshminarayanan Nandgoapal
    • 3
  • Rohan Garje
    • 2
  • Yousef Zakharia
    • 2
  • Shilpa Gupta
    • 4
    • 5
  1. 1.Moffitt Cancer CenterTampaUSA
  2. 2.University of IowaIowa CityUSA
  3. 3.University of Alabama at BirminghamBirminghamUSA
  4. 4.Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  5. 5.Hematology, Oncology and Transplantation, Department of MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations