Advertisement

The Role of PD-1 Checkpoint Inhibition in Gynecologic Malignancies

  • Christine Garcia
  • Kari L. RingEmail author
Gynecologic Cancers (LA Cantrell, Section Editor)
  • 453 Downloads
Part of the following topical collections:
  1. Topical Collection on Gynecologic Cancers

Opinion statement

Activity of PD-1 and PD-L1 inhibitors has been demonstrated in ovarian, endometrial, and cervical cancer, with a tolerable side effect profile and the highest response rate seen in mismatch repair–deficient endometrial cancers. Other biomarkers are under active investigation. Tumor testing for mismatch repair deficiency or high microsatellite instability for treatment with pembrolizumab should be considered an option for all women with progressive gynecologic malignancy.

Keywords

Programmed death ligand-1 Immunotherapy Gynecologic cancer Ovarian cancer Endometrial cancer Cervical cancer 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as •• Of major importance

  1. 1.
    FDA News Release. FDA approves first cancer treatment for any solid tumor with a specific genetic feature. 2017. Available at: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm560167.htm. Accessed Sept 27th 2017.
  2. 2.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):61–73.CrossRefGoogle Scholar
  3. 3.
    Ventriglia J, Paciolla I, Pisano C, Cecere SC, di Napoli M, Tambaro R, et al. Immunotherapy in ovarian, endometrial and cervical cancer: state of the art and future perspectives. Cancer Treat Rev. 2017;59:109–16.CrossRefGoogle Scholar
  4. 4.
    Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbial Immunol. 2011;350:17–37.Google Scholar
  5. 5.
    Zou W, Chen L. B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.CrossRefGoogle Scholar
  6. 6.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.CrossRefGoogle Scholar
  7. 7.
    Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–9.CrossRefGoogle Scholar
  8. 8.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefGoogle Scholar
  9. 9.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Eng J Med. 2012;36618:2455–65.CrossRefGoogle Scholar
  10. 10.
    Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, et al. Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst. 2013;105(9):595–605.CrossRefGoogle Scholar
  11. 11.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(60):2507–16.CrossRefGoogle Scholar
  12. 12.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefGoogle Scholar
  13. 13.
    Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.CrossRefGoogle Scholar
  14. 14.
    Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5065–74.CrossRefGoogle Scholar
  15. 15.
    Gottleib CE, Mills AM, Cross JV, Ring KL. Tumor-associated macrophage expression of PD-L1 in implants of high-grade serous carcinoma: a comparison of matched primary and metastatic tumors. Gynecol Oncol. 2017;144(3):607–12.CrossRefGoogle Scholar
  16. 16.
    Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33(34):4015–22.CrossRefGoogle Scholar
  17. 17.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefGoogle Scholar
  18. 18.
    •• Le DT, Uram JN, Wang BR, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20 First trial to establish MSI-H status as predictive biomarker for response to checkpoint blockade. CrossRefGoogle Scholar
  19. 19.
    •• Puzanov I, Diab A, Abdallah K, Bingham CO, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Management Working Group. J ImmunoTher Cancer. 2017;5:95 Guidelines for managing toxicities associated with checkpoint inhibition. CrossRefGoogle Scholar
  20. 20.
    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.PubMedPubMedCentralGoogle Scholar
  21. 21.
    •• Postow MA, Sidlow R, Hellman MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68 Outlines immune-related adverse events and management of these events in clinical practice. CrossRefGoogle Scholar
  22. 22.
    Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.CrossRefGoogle Scholar
  23. 23.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefGoogle Scholar
  24. 24.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.CrossRefGoogle Scholar
  25. 25.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefGoogle Scholar
  26. 26.
    Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book. 2015;35:76–83.CrossRefGoogle Scholar
  27. 27.
    Disis ML, Patel MR, Pant S, et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with recurrent/refractory ovarian cancer from the JAVELIN Solid Tumor phase 1b trials: safety and clinical activity. J Clin Oncol. 2016; 34. Available at: http://meetinglibrary.asco.org/record/126089/abstract. Accessed Sept 27th 2017.
  28. 28.
    Varga A, Piha-Paul S, Ott PA, et al. Pembrolizumab in patients with PD-L1–positive advanced ovarian cancer: updated analysis of KEYNOTE-028 [ASCO abstract 5513]. J Clin Oncol. 2017;35(15 suppl).Google Scholar
  29. 29.
    Rauh-Hain JA, Brewster WR, Behbakht K. Society of Gynecologic Oncology 2018 Annual Meeting on Women’s Cancer: meeting report. Gynecol Oncol 2018;  https://doi.org/10.1016/j.ygyno.2018.04.569. Accessed May 22 2018.
  30. 30.
    Ott PA, Bang Y-J, Berton-Riguad D, et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand-1-positive endometrial cancer: results from the KEYNOTE-028 study. J Clin Oncol. 2017;35(22):2535–41.CrossRefGoogle Scholar
  31. 31.
    Frenel JS, Le Tourneau C, O'Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the Phase Ib KEYNOTE-028 Trial. J Clin Oncol. 2017 Dec 20;35(36):4035–41.CrossRefGoogle Scholar
  32. 32.
    Hollebecque A, Meyer T, Moore KN, et al. An open-label multicohort, phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J Clin Oncol. 2017;34(suppl; abstr 5504).Google Scholar
  33. 33.
    Chung HC, Schellens JHM, Delord J-P, et al. Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 KEYNOTE-158 study. J Clin Oncol. 2018;36(suppl; abstr 5522).Google Scholar
  34. 34.
    Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21(2):419–23.CrossRefGoogle Scholar
  35. 35.
    Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.CrossRefGoogle Scholar
  36. 36.
    Cancer Genome Atlas Research N, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.CrossRefGoogle Scholar
  37. 37.
    Cohn DE, Frankel WL, Resnick KE, Zanagnolo VL, Copeland LJ, Hampel H, et al. Improved survival with an intact DNA mismatch repair system in endometrial cancer. Obstet Gynecol. 2006;108(5):1208–15.CrossRefGoogle Scholar
  38. 38.
    Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26(35):5783–8.CrossRefGoogle Scholar
  39. 39.
    Chang L, Chang M, Chang HM, et al. Microsatellite instability: a predictive biomarkers for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26(2);e15-21.Google Scholar
  40. 40.
    Sloan EA, Ring KL, Willis BC, Modesitt SC, Mills AM. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including Lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am J Surg Pathol. 2017;41:326–33.CrossRefGoogle Scholar
  41. 41.
    Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 2016;126(6):2334–40.CrossRefGoogle Scholar
  42. 42.
    Strickland KC, Howitt BE, Rodig SJ, et al. Immunogenicity of clear cell ovarian cancer: association with ARID1A loss, microsatellite instability and endometriosis. J Clin Oncol. 2016; 34. Abstract available from: http://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.5514. Accessed Sept 27th 2017.
  43. 43.
    Xiao X, Melton DW, Gourley C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol Oncol. 2014;132(20):506–12.CrossRefGoogle Scholar
  44. 44.
    Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1(9):1319–23.CrossRefGoogle Scholar
  45. 45.
    Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98.CrossRefGoogle Scholar
  46. 46.
    Landskron J, Helland Ø, Torgersen KM, Aandahl EM, Gjertsen BT, Bjørge L, et al. Activated regulatory and memory T-cells accumulate in malignant ascites from ovarian carcinoma patients. Cancer Immunol Immunother. 2015;64:337–47.CrossRefGoogle Scholar
  47. 47.
    Webb JR, Milne K, Kroeger DR, Nelson BH. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high grade serous ovarian cancer. Gynecol Oncol. 2016;141(2):293–302.CrossRefGoogle Scholar
  48. 48.
    Murphy MA, Wentzensen N. Frequency of mismatch repair deficiency in ovarian cancer: a systematic review. Int J Cancer. 2011;129:1914–22.CrossRefGoogle Scholar
  49. 49.
    Walboomers JM, Jacobs MV, Manos M, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.CrossRefGoogle Scholar
  50. 50.
    Castle PE, Wacholder S, Lorinez AT, et al. A prospective study of high-grade cervical neoplasia risk among human papillomavirus-infected women. J Natl Cancer Inst. 2002;94(18):1406–14.CrossRefGoogle Scholar
  51. 51.
    Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92(18):1500–10.CrossRefGoogle Scholar
  52. 52.
    Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27.CrossRefGoogle Scholar
  53. 53.
    Howitt BE, Sun HH, Roemer MGM, Kelley A, Chapuy B, Aviki E, et al. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol. 2016;2(4):518–22.CrossRefGoogle Scholar
  54. 54.
    Hinrichs CS, Stevanovic S, Draper L, et al. HPV-targeted tumor-infiltrating lymphocytes for cervical cancer. Presented at: 2014 ASCO Annual Meeting Press Briefing; June 2, 2014; Chicago, IL. Abstract LBA3008.Google Scholar
  55. 55.
    Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev vaccines. 2013;12(3):271–83.CrossRefGoogle Scholar
  56. 56.
    Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.CrossRefGoogle Scholar
  57. 57.
    Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. Int J Mol Sci. 2016;17(12):E2113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thorton Division of Gynecologic Oncology, Department of Obstetrics and GynecologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations