Advertisement

Big Data in Head and Neck Cancer

  • Carlo ResteghiniEmail author
  • Annalisa Trama
  • Elio Borgonovi
  • Hykel Hosni
  • Giovanni Corrao
  • Ester Orlandi
  • Giuseppina Calareso
  • Loris De Cecco
  • Cesare Piazza
  • Luca Mainardi
  • Lisa Licitra
Head and Neck Cancer (L Licitra, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Head and Neck Cancer

Opinion statement

Head and neck cancers can be used as a paradigm for exploring “big data” applications in oncology. Computational strategies derived from big data science hold the promise of shedding new light on the molecular mechanisms driving head and neck cancer pathogenesis, identifying new prognostic and predictive factors, and discovering potential therapeutics against this highly complex disease. Big data strategies integrate robust data input, from radiomics, genomics, and clinical-epidemiological data to deeply describe head and neck cancer characteristics. Thus, big data may advance research generating new knowledge and improve head and neck cancer prognosis supporting clinical decision-making and development of treatment recommendations.

Keywords

Big data Support vector machine Machine learning Head and neck cancer Genomics Radiomics Surgery Radiotherapy Oncology Forecasting Evidence based medicine Guidelines Decision support system 

Notes

Compliance With Ethical Standards

Conflict of Interest

Carlo Resteghini declares that he has no conflict of interest.

Annalisa Trama declares that she has no conflict of interest.

Elio Borgonovi declares that he has no conflict of interest.

Hykel Hosni declares that he has no conflict of interest.

Giovanni Corrao has received research funding through grants from the European Community (EC); the Italian Medicines Agency (AIFA); the Italian Ministry of Education, Universities and Research (MIUR); Novartis; GlaxoSmithKline; Roche; Amgen; and Bristol-Myers Squibb.

Ester Orlandi declares that she has no conflict of interest.

Giuseppina Calareso declares that she has no conflict of interest.

Loris De Cecco has received research funding from the Associazione Italiana Ricerca Cancro (AIRC).

Cesare Piazza declares that he has no conflict of interest.

Luca Mainardi declares that he has no conflict of interest.

Lisa Licitra has received funding (to her institution) for clinical studies and research from AstraZeneca, Boehringer Ingelheim, Eisai, Merck Serono, MSD, Novartis, and Roche; has received compensation for service as a consultant/advisor and/or for lectures from AstraZeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Debiopharm, Eisai, Merck Serono, MSD, Novartis, Roche, and Sobi; and has received travel coverage for medical meetings from Bayer, Bristol-Myers Squibb, Debiopharm, Merck Serono, MSD, and Sobi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Li S, Kang L, Zhao X-M. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics. Biomed Res Int. 2014;2014:1–8.  https://doi.org/10.1155/2014/362738.CrossRefGoogle Scholar
  2. 2.
    Sessler DI. Big Data–and its contributions to peri-operative medicine. Anaesthesia. 2014;69(2):100–5 http://www.ncbi.nlm.nih.gov/pubmed/24588022.CrossRefGoogle Scholar
  3. 3.
    Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-driven definition of big data in healthcare. Biomed Res Int. 2015;2015:1–9.  https://doi.org/10.1155/2015/639021.CrossRefGoogle Scholar
  4. 4.
    Frost & Sullivan. Drowning in Big Data? Reducing Information Technology Complexities and Costs For Healthcare Organizations. www.frost.com.
  5. 5.
    • European Commission satellite workshop ‘Big data in health research: an EU action plan.’ http://bigdata2015.uni.lu/eng/European-Commission-satellite-workshop. “Big Data in Healthcare” definition for this review was derived by this paper.
  6. 6.
    Fernández-Luque L, Bau T. Health and social media: perfect storm of information. Healthc Inform Res. 2015;21(2):67–73.  https://doi.org/10.4258/hir.2015.21.2.67.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.  https://doi.org/10.1002/ijc.29210.CrossRefPubMedGoogle Scholar
  8. 8.
    Gatta G, Botta L, Sánchez MJ, et al. Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: the EUROCARE-5 population-based study. Eur J Cancer. 2015;51(15):2130–43.  https://doi.org/10.1016/j.ejca.2015.07.043.CrossRefPubMedGoogle Scholar
  9. 9.
    Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565–7.  https://doi.org/10.1038/nbt1206-1565.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics. 2018;15(1):41–51.  https://doi.org/10.21873/cgp.20063.CrossRefPubMedGoogle Scholar
  11. 11.
    Su J, Zhang Y, Su H, Zhang C, Li W. A recurrence model for laryngeal cancer based on SVM and gene function clustering. Acta Otolaryngol. 2017;137(5):557–62.  https://doi.org/10.1080/00016489.2016.1247984.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang B, Guo Q, Wang F, Cai K, Bao X, Chu J. A 80-gene set potentially predicts the relapse in laryngeal carcinoma optimized by support vector machine. Cancer Biomarkers. 2017;19(1):65–73.  https://doi.org/10.3233/CBM-160375.CrossRefPubMedGoogle Scholar
  13. 13.
    Wan X-B, Zhao Y, Fan X-J, et al. Molecular prognostic prediction for locally advanced nasopharyngeal carcinoma by support vector machine integrated approach. Tao Q, ed. PLoS One. 2012;7(3):e31989. doi: https://doi.org/10.1371/journal.pone.0031989
  14. 14.
    Chang S-W, Abdul-Kareem S, Merican A, Zain R. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics. 2013;14(1):170.  https://doi.org/10.1186/1471-2105-14-170.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li S, Chen X, Liu X, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncol. 2017;73:1–9.  https://doi.org/10.1016/j.oraloncology.2017.07.026.CrossRefPubMedGoogle Scholar
  16. 16.
    Stepp WH, Farquhar D, Sheth S, et al. RNA oncoimmune phenotyping of HPV-positive p16-positive oropharyngeal squamous cell carcinomas by nodal status. JAMA Otolaryngol Neck Surg. April 2018. doi: https://doi.org/10.1001/jamaoto.2018.0602
  17. 17.
    Schmidt S, Linge A, Zwanenburg A, et al. Development and validation of a gene signature for patients with head and neck carcinomas treated by postoperative radio(chemo)therapy. Clin Cancer Res. 2018;24(6):1364–74.  https://doi.org/10.1158/1078-0432.CCR-17-2345.CrossRefPubMedGoogle Scholar
  18. 18.
    Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(1):4006.  https://doi.org/10.1038/ncomms5006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015;5:272.  https://doi.org/10.3389/fonc.2015.00272.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7(1):13206.  https://doi.org/10.1038/s41598-017-13448-3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    • Parmar C, Leijenaar RTH, Grossmann P, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5(1):11044.  https://doi.org/10.1038/srep11044 This paper provided the first insight on radiomic potential in HNCs.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Elhalawani H, Kanwar A, Mohamed ASR, et al. Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients. Sci Rep. 2018;8(1):1524.  https://doi.org/10.1038/s41598-017-14687-0.CrossRefGoogle Scholar
  23. 23.
    Elhalawani H, Mohamed ASR, White AL, et al. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges. Sci data. 2017;4:170077.  https://doi.org/10.1038/sdata.2017.77.CrossRefGoogle Scholar
  24. 24.
    Ranjbar S, Ning S, Zwart CM, et al. Computed tomography-based texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinoma. J Comput Assist Tomogr. 2017;42(2):1.  https://doi.org/10.1097/RCT.0000000000000682.CrossRefGoogle Scholar
  25. 25.
    Lu G, Little JV, Wang X, et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin Cancer Res. 2017;23(18):5426–36.  https://doi.org/10.1158/1078-0432.CCR-17-0906.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study. Phys Medica. 2018;45:192–7.  https://doi.org/10.1016/j.ejmp.2017.10.008.CrossRefGoogle Scholar
  27. 27.
    • Jethanandani A, Lin TA, Volpe S, et al. Exploring applications of radiomics in magnetic resonance imaging of head and neck cancer: a systematic review. Front Oncol. 2018;8(MAY):131.  https://doi.org/10.3389/fonc.2018.00131. Usefull review on MRI radiomics in HNCs.
  28. 28.
    Ramkumar S, Ranjbar S, Ning S, et al. MRI-based texture analysis to differentiate sinonasal squamous cell carcinoma from inverted papilloma. Am J Neuroradiol. 2017;38(5):1019–25.  https://doi.org/10.3174/ajnr.A5106.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017;403:21–7.  https://doi.org/10.1016/j.canlet.2017.06.004.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23(15):4259–69.  https://doi.org/10.1158/1078-0432.CCR-16-2910.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu B, Khong P-L, Chan T. Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine. Int J Comput Assist Radiol Surg. 2012;7(4):635–46.  https://doi.org/10.1007/s11548-011-0669-y.CrossRefPubMedGoogle Scholar
  32. 32.
    Folkert MR, Setton J, Apte AP, et al. Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Phys Med Biol. 2017;62(13):5327–43.  https://doi.org/10.1088/1361-6560/aa73cc.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gao RW, Teraphongphom NT, van den Berg NS, et al. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer Res. 2018;78(17):5144–54.  https://doi.org/10.1158/0008-5472.CAN-18-0878.CrossRefPubMedGoogle Scholar
  34. 34.
    Farah CS, Fox SA, Dalley AJ. Integrated miRNA-mRNA spatial signature for oral squamous cell carcinoma: a prospective profiling study of narrow band imaging guided resection. Sci Rep. 2018;8(1):823.  https://doi.org/10.1038/s41598-018-19341-x.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dittberner A, Rodner E, Ortmann W, et al. Automated analysis of confocal laser endomicroscopy images to detect head and neck cancer. Head Neck. 2015;38(S1):E1419–26.  https://doi.org/10.1002/hed.24253.CrossRefPubMedGoogle Scholar
  36. 36.
    Mascharak S, Baird BJ, Holsinger FC. Detecting oropharyngeal carcinoma using multispectral, narrow-band imaging and machine learning. Laryngoscope. March. 2018.  https://doi.org/10.1002/lary.27159.
  37. 37.
    Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A. Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging. 2017;4(03):1.  https://doi.org/10.1117/1.JMI.4.3.034502.CrossRefGoogle Scholar
  38. 38.
    Unger J, Lohscheller J, Reiter M, Eder K, Betz CS, Schuster M. A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis. Cancer Res. 2015;75(1):31–9.  https://doi.org/10.1158/0008-5472.CAN-14-1458.CrossRefPubMedGoogle Scholar
  39. 39.
    Yan B, Li B, Wen Z, Luo X, Xue L, Li L. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer. 2015;15(1):650.  https://doi.org/10.1186/s12885-015-1653-7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lau K, Wilkinson J, Moorthy R. A web-based prediction score for head and neck cancer referrals. Clinical Otolaryngology. http://www.ncbi.nlm.nih.gov/pubmed/29543399. Published April 6, 2018.
  41. 41.
    Alam IS, Steinberg I, Vermesh O, et al. Emerging intraoperative imaging modalities to improve surgical precision. Mol Imaging Biol. June 2018.  https://doi.org/10.1007/s11307-018-1227-6.
  42. 42.
    Grillone GA, Wang Z, Krisciunas GP, et al. The color of cancer: margin guidance for oral cancer resection using elastic scattering spectroscopy. Laryngoscope. 2017;127:S1–9.  https://doi.org/10.1002/lary.26763.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Huber T, Wunderling T, Paschold M, Lang H, Kneist W, Hansen C. Highly immersive virtual reality laparoscopy simulation: development and future aspects. Int J Comput Assist Radiol Surg. 2018;13(2):281–90.  https://doi.org/10.1007/s11548-017-1686-2.CrossRefPubMedGoogle Scholar
  44. 44.
    Mazur T, Mansour TR, Mugge L, Medhkour A. Virtual reality–based simulators for cranial tumor surgery: a systematic review. World Neurosurg. 2018;110:414–22.  https://doi.org/10.1016/j.wneu.2017.11.132.CrossRefPubMedGoogle Scholar
  45. 45.
    Banerjee S, Pal M, Chakrabarty J, et al. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer. Anal Bioanal Chem. 2015;407(26):7935–43.  https://doi.org/10.1007/s00216-015-8960-3.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu Y, Li Y, Fu Y, et al. Quantitative prediction of oral cancer risk in patients with oral leukoplakia. Oncotarget. 2017;8(28):1–8.  https://doi.org/10.18632/oncotarget.17550.CrossRefGoogle Scholar
  47. 47.
    Grégoire V. Tumor control probability (TCP) and normal tissue complication probability (NTCP) in head and neck cancer. Rays. 30(2):105–8 http://www.ncbi.nlm.nih.gov/pubmed/16294902.
  48. 48.
    Lambin P, van Stiphout RGPM, Starmans MHW, et al. Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol. 2013;10(1):27–40.  https://doi.org/10.1038/nrclinonc.2012.196.CrossRefPubMedGoogle Scholar
  49. 49.
    Dean JA, Wong KH, Welsh LC, et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother Oncol. 2016;120(1):21–7.  https://doi.org/10.1016/j.radonc.2016.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dean J, Wong K, Gay H, et al. Incorporating spatial dose metrics in machine learning-based normal tissue complication probability (NTCP) models of severe acute dysphagia resulting from head and neck radiotherapy. Clin Transl Radiat Oncol. 2018;8:27–39.  https://doi.org/10.1016/j.ctro.2017.11.009.CrossRefPubMedGoogle Scholar
  51. 51.
    Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;8:35.  https://doi.org/10.3389/fonc.2018.00035.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pota M, Scalco E, Sanguineti G, et al. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif Intell Med. 2017;81:41–53.  https://doi.org/10.1016/j.artmed.2017.03.004.CrossRefPubMedGoogle Scholar
  53. 53.
    Quon H, Hui X, Cheng Z, et al. Quantitative evaluation of head and neck cancer treatment-related dysphagia in the development of a personalized treatment deintensification paradigm. Int J Radiat Oncol. 2017;99(5):1271–8.  https://doi.org/10.1016/j.ijrobp.2017.08.004.CrossRefGoogle Scholar
  54. 54.
    Zhang HH, D’Souza WD, Shi L, Meyer RR. Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework. Int J Radiat Oncol. 2009;74(5):1617–26.  https://doi.org/10.1016/j.ijrobp.2009.02.065.CrossRefGoogle Scholar
  55. 55.
    Guidi G, Maffei N, Vecchi C, et al. A support vector machine tool for adaptive tomotherapy treatments: prediction of head and neck patients criticalities. Phys Medica. 2015;31(5):442–51.  https://doi.org/10.1016/j.ejmp.2015.04.009.CrossRefGoogle Scholar
  56. 56.
    Guidi G, Maffei N, Meduri B, et al. A machine learning tool for re-planning and adaptive RT: a multicenter cohort investigation. Phys Medica. 2016;32(12):1659–66.  https://doi.org/10.1016/j.ejmp.2016.10.005.CrossRefGoogle Scholar
  57. 57.
    Yang X, Wu N, Cheng G, et al. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol. 2014;90(5):1225–33.  https://doi.org/10.1016/j.ijrobp.2014.08.350.CrossRefGoogle Scholar
  58. 58.
    McIntosh C, Welch M, McNiven A, Jaffray DA, Purdie TG. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method. Phys Med Biol. 2017;62(15):5926–44.  https://doi.org/10.1088/1361-6560/aa71f8.CrossRefPubMedGoogle Scholar
  59. 59.
    Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. The exposome: molecules to populations. Annu Rev Pharmacol Toxicol. 2019;59(1):annurev-pharmtox-010818-021315. doi: https://doi.org/10.1146/annurev-pharmtox-010818-021315
  60. 60.
    Irimie AI, Braicu C, Cojocneanu R, et al. Differential effect of smoking on gene expression in head and neck cancer patients. Int J Environ Res Public Health. 2018;15(7):1558.  https://doi.org/10.3390/ijerph15071558.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Gupta S, Tran T, Luo W, et al. Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry. BMJ Open. 2014;4(3):e004007.  https://doi.org/10.1136/bmjopen-2013-004007.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Jiang R, You R, Pei X-Q, et al. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients’ survival. Oncotarget. 2016;7(3):3645–57.  https://doi.org/10.18632/oncotarget.6436.CrossRefPubMedGoogle Scholar
  63. 63.
    Deist TM, Dankers FJWM, Valdes G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. June. 2018.  https://doi.org/10.1002/mp.12967.
  64. 64.
    Van Der Ploeg T, Datema F, Baatenburg De Jong R, Steyerberg EW. Prediction of survival with alternative modeling techniques using pseudo values. Pajewski NM, ed. PLoS One. 2014;9(6):e100234. doi: https://doi.org/10.1371/journal.pone.0100234
  65. 65.
    Lan MY, Yang WLR, Lin KT, et al. Using computational strategies to predict potential drugs for nasopharyngeal carcinoma. Head Neck. 2014;36(10):1398–407.  https://doi.org/10.1002/hed.23464.CrossRefPubMedGoogle Scholar
  66. 66.
    Randhawa V, Kumar Singh A, Acharya V. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer. Mol Biosyst. 2015;11(12):3362–77.  https://doi.org/10.1039/c5mb00468c.CrossRefPubMedGoogle Scholar
  67. 67.
    Lewis JS, Ali S, Luo J, Thorstad WL, Madabhushi A. A quantitative histomorphometric classifier (QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal squamous cell carcinoma. Am J Surg Pathol. 2014;38(1):128–37.  https://doi.org/10.1097/PAS.0000000000000086.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    • Big Data and Models for Personalized Head and Neck Cancer Decision Support (BD2Decide). https://clinicaltrials.gov/ct2/show/NCT02832102. Large internationalretrospective and prospective trial aiming at integration of multiple big data sources to elaborate an HNC decision support system.
  69. 69.
    •• Sim I. Two ways of knowing: big data and evidence-based medicine. Ann Intern Med. 2016;164(8):562.  https://doi.org/10.7326/M15-2970 This work is of paramount importance for its synthetic and clear dissection of critical points and opportunities in the evolution of scientific and clinical practice.CrossRefPubMedGoogle Scholar
  70. 70.
    Orlandi E, Licitra L. Personalized medicine and the contradictions and limits of first-generation deescalation trials in patients with human papillomavirus-positive oropharyngeal cancer. JAMA Otolaryngol Neck Surg. 2018;144(2):99.  https://doi.org/10.1001/jamaoto.2017.2308.CrossRefGoogle Scholar
  71. 71.
    Gatta G, Capocaccia R, Botta L, et al. Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet—a population-based study. Lancet Oncol. 2017;18(8):1022–39.  https://doi.org/10.1016/S1470-2045(17)30445-X.CrossRefPubMedGoogle Scholar
  72. 72.
    • Goldstein IM, Lawrence J, Miner AS. Human-machine collaboration in cancer and beyond. JAMA Oncol. 2017;3(10):1303.  https://doi.org/10.1001/jamaoncol.2016.6413 This article drows possible paths for the evolution and integration of “artificial intelligence” in healthcare.CrossRefPubMedGoogle Scholar
  73. 73.
    Yu K-H, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474.  https://doi.org/10.1038/ncomms12474.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kohn MS, Sun J, Knoop S, et al. IBM’s health analytics and clinical decision support. IMIA Yearb. 2014;9(1):154–62.  https://doi.org/10.15265/IY-2014-0002.CrossRefGoogle Scholar
  75. 75.
    Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics. JAMA - J Am Med Assoc. 2018;320(1):E1–2.  https://doi.org/10.1001/jama.2018.5602.CrossRefGoogle Scholar
  76. 76.
    Licitra L, Trama A, Hosni H. Benefits and risks of machine learning decision support systems. JAMA. 2017;318(23):2354.  https://doi.org/10.1001/jama.2017.16627.CrossRefPubMedGoogle Scholar
  77. 77.
    Berner ES, Ozaydin B. Benefits and risks of machine learning decision support systems. JAMA. 2017;318(23):2353.  https://doi.org/10.1001/jama.2017.16619.CrossRefPubMedGoogle Scholar
  78. 78.
    Jordan MI. Artificial intelligence — the revolution has not happened yet. https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7. Published 2018.
  79. 79.
    Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA. 1992;268(17):2420–5.CrossRefGoogle Scholar
  80. 80.
    Guyatt GH, Sackett DL, Sinclair JC, Hayward R, Cook DJ, Cook RJ. Users’ guides to the medical literature. IX. A method for grading health care recommendations. Evidence-Based Medicine Working Group. JAMA. 1995;274(22):1800–4.CrossRefGoogle Scholar
  81. 81.
    Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.  https://doi.org/10.1136/bmj.328.7454.1490.CrossRefPubMedGoogle Scholar
  82. 82.
    • Djulbegovic B, Guyatt GH. Progress in evidence-based medicine: a quarter century on. Lancet. 2017;390(10092):415–23.  https://doi.org/10.1016/S0140-6736(16)31592-6 This work reports on the last 25 years of medical evolution.CrossRefPubMedGoogle Scholar
  83. 83.
    Foote RL, Gilbert J, Gillison ML, et al. NCCN Guidelines Version 2.2018 Head and Neck Cancers.; 2018. https://www.nccn.org/professionals/physician_gls/PDF/head-and-neck.pdf.
  84. 84.
    Pignon JP, Bourhis J, Domenge C, Designé L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-analysis of chemotherapy on head and neck cancer. Lancet (London, England). 2000;355(9208):949–55 http://www.ncbi.nlm.nih.gov/pubmed/10768432.CrossRefGoogle Scholar
  85. 85.
    Pignon J-P, le Maître A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14.  https://doi.org/10.1016/j.radonc.2009.04.014.CrossRefPubMedGoogle Scholar
  86. 86.
    Trama A, Botta L, Nicolai N, et al. Prostate cancer changes in clinical presentation and treatments in two decades: an Italian population-based study. Eur J Cancer. 2016;67:91–8.  https://doi.org/10.1016/j.ejca.2016.07.021.CrossRefPubMedGoogle Scholar
  87. 87.
    Font-gonzalez A, Feijen EL, Sieswerda E, et al. Social outcomes in adult survivors of childhood cancer compared to the general population: linkage of a cohort with population registers. Psychooncology. 2015;941(November 2015):933–41.  https://doi.org/10.1002/pon.4040.CrossRefGoogle Scholar
  88. 88.
    Gunnes MW, Lie RT, Bjørge T, et al. Economic independence in survivors of cancer diagnosed at a young age: a Norwegian national cohort study. Cancer. 2016;122(24):3873–82.  https://doi.org/10.1002/cncr.30253.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Gray L, David Batty G, Craig P, et al. Cohort profile: the Scottish health surveys cohort: linkage of study participants to routinely collected records for mortality, hospital discharge, cancer and offspring birth characteristics in three nationwide studies. Int J Epidemiol. 2010;39(2):345–50.  https://doi.org/10.1093/ije/dyp155.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Leung J, Atherton I, Kyle RG, Hubbard G, McLaughlin D. Psychological distress, optimism and general health in breast cancer survivors: a data linkage study using the Scottish Health Survey. Support Care Cancer. 2016;24(4):1755–61.  https://doi.org/10.1007/s00520-015-2968-2.CrossRefPubMedGoogle Scholar
  91. 91.
    Shah NH, LePendu P, Bauer-Mehren A, et al. Proton pump inhibitor usage and the risk of myocardial infarction in the general population. Guo Y, ed. PLoS One. 2015;10(6):e0124653. doi: https://doi.org/10.1371/journal.pone.0124653
  92. 92.
    • Coveney PV, Dougherty ER, Highfield RR. Big data need big theory too. Philos Trans A Math Phys Eng Sci. 2016;374(2080):20160153.  https://doi.org/10.1098/rsta.2016.0153 Critics to the use of big data technology in the absence of adequatetheoretical basis.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318(6):517.  https://doi.org/10.1001/jama.2017.7797 Outline of possible pitfall in the use of big data in medicine.CrossRefPubMedGoogle Scholar
  94. 94.
    Cabitza F, Rasoini R, Gensini GF. Benefits and risks of machine learning decision support systems—reply. JAMA. 2017;318(23):2356.  https://doi.org/10.1001/jama.2017.16635.CrossRefPubMedGoogle Scholar
  95. 95.
    Hersh WR, Weiner MG, Embi PJ, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 SUPPL.3):S30–7.  https://doi.org/10.1097/MLR.0b013e31829b1dbd.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Auffray C, Balling R, Barroso I, et al. Making sense of big data in health research: towards an EU action plan. Genome Med. 2016;8(1):71.  https://doi.org/10.1186/s13073-016-0323-y.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Van Der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14(1):137. doi: https://doi.org/10.1186/1471-2288-14-137
  98. 98.
    Hosni H, Vulpiani A. Forecasting in the light of big data. May 2017. doi: https://doi.org/10.1007/s13347-017-0265-3
  99. 99.
    Corrao G. Building reliable evidence from realworld data: methods, cautiousness and recommendations. Epidemiol Biostat Public Heal. 2013;10(3):1–40.  https://doi.org/10.2427/8981.CrossRefGoogle Scholar
  100. 100.
    Lasko TA, Walsh CG, Malin B. Benefits and risks of machine learning decision support systems. JAMA. 2017;318(23):2355.  https://doi.org/10.1001/jama.2017.16623.CrossRefPubMedGoogle Scholar
  101. 101.
    Huesch MD. Benefits and risks of machine learning decision support systems. JAMA. 2017;318(23):2355.  https://doi.org/10.1001/jama.2017.16611.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Carlo Resteghini
    • 1
    Email author
  • Annalisa Trama
    • 2
  • Elio Borgonovi
    • 3
  • Hykel Hosni
    • 4
  • Giovanni Corrao
    • 5
  • Ester Orlandi
    • 6
  • Giuseppina Calareso
    • 7
  • Loris De Cecco
    • 8
  • Cesare Piazza
    • 9
    • 10
  • Luca Mainardi
    • 11
  • Lisa Licitra
    • 1
    • 10
  1. 1.Head and Neck Medical Oncology UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  2. 2.Evaluative Epidemiology UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  3. 3.Department of Policy Analysis and Public Management, Research Center on Health and Social Care Management, CERGAS, SDA Bocconi School of ManagementBocconi UniversityMilanItaly
  4. 4.Department of PhilosophyUniversity of MilanMilanItaly
  5. 5.Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public HealthUniversity of Milano-BicoccaMilanItaly
  6. 6.Radiotherapy 2 UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  7. 7.Department of RadiologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  8. 8.Integrated Biology Platform, Department of Applied Research and Technology DevelopmentFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  9. 9.Department of Otorhinolaryngology, Maxillofacial, and Thyroid SurgeryFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  10. 10.University of MilanMilanItaly
  11. 11.Department of Electronic, Information, and Bioengineering, Politecnico di MilanoMilanItaly

Personalised recommendations