Advertisement

Immunotherapy for Brain Tumors

  • Lan B. Hoang-Minh
  • Duane A. Mitchell
Neuro-oncology (GJ Lesser, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Opinion statement

Despite aggressive surgery, radiation, and systemic chemotherapy, the prognosis for patients diagnosed with malignant brain tumors remains extremely poor, and standard treatments carry significant risks for long-term neurocognitive deficits. There is a clear and urgent need for the development of more effective treatments that will add minimal toxicity to standard therapies for invasive brain cancers. Cancer immunotherapy is a treatment modality that holds promise for the delivery of tumor-specific cytotoxicity, with the potential to eliminate brain tumor cells without harming the eloquent brain.

Keywords

Brain cancer Glioma Immune therapy Cancer vaccines Adoptive cell therapy Immune checkpoint inhibitors Oncolytic viruses Clinical trials 

Notes

Compliance with Ethical Standards

Conflict of Interest

Lan B. Hoang-Minh declares that she has no conflict of interest.

Duane A. Mitchell holds patented technologies that have been licensed or have exclusive options to license to Celldex Therapeutics, Annias, Immunomic Therapeutics, and iOncologi; receives research funding from Immunomic Therapeutics; serves as an advisor/consultant to Bristol-Myers Squibb, Tocagen, and Oncorus; and is co-founder of iOncologi, Inc., an immuno-oncology biotechnology company.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.  https://doi.org/10.3322/caac.21442 This report compiled by the American Cancer Society includes the most recent data on cancer incidence, mortality, and survival as well as estimations of the numbers of new cancer cases and deaths that will occur in the United States.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    •• Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.  https://doi.org/10.1038/nature14432 This article is the first to report the discovery of meningeal lymphatic vessels (or meningeal lymphatics), which are functional lymphatic vessels located parallel to the dural sinuses and meningeal arteries of the mammalian central nervous system. This is a significant finding in the field of neuroimmunology as it revolutionizes the traditional view of the brain being an immune-privileged entity.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Manglani M, McGavern DB. New advances in CNS immunity against viral infection. Curr Opin Virol. 2018;28:116–26.  https://doi.org/10.1016/j.coviro.2017.12.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017b;18(10):1373–85. doi: https://doi.org/10.1016/S1470-2045(17)30517-X.CrossRefGoogle Scholar
  5. 5.
    Inoges S, Tejada S, de Cerio AL, Gallego Perez-Larraya J, Espinos J, Idoate MA, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med. 2017;15(1):104.  https://doi.org/10.1186/s12967-017-1202-z.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015b;519(7543):366–9.  https://doi.org/10.1038/nature14320.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23(8):1898–909.  https://doi.org/10.1158/1078-0432.ccr-16-2057.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, Lee KP, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339–52.  https://doi.org/10.1007/s00262-016-1890-x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. A Cancer Research UK first time in human Phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–85.  https://doi.org/10.1158/1078-0432.ccr-16-0506.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Oji Y, Hashimoto N, Tsuboi A, Murakami Y, Iwai M, Kagawa N, et al. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer. 2016;139(6):1391–401.  https://doi.org/10.1002/ijc.30182.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963–71.  https://doi.org/10.3171/JNS/2008/108/5/0963.CrossRefPubMedGoogle Scholar
  12. 12.
    Curry WT Jr, Gorrepati R, Piesche M, Sasada T, Agarwalla P, Jones PS, et al. Vaccination with irradiated autologous tumor cells mixed with irradiated GM-K562 cells stimulates antitumor immunity and T lymphocyte activation in patients with recurrent malignant glioma. Clin Cancer Res. 2016;22(12):2885–96.  https://doi.org/10.1158/1078-0432.ccr-15-2163.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cacciavillano W, Sampor C, Venier C, Gabri MR, de Davila MT, Galluzzo ML, et al. A Phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies. Pediatr Blood Cancer. 2015;62(12):2120–4.  https://doi.org/10.1002/pbc.25631.CrossRefPubMedGoogle Scholar
  14. 14.
    Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 2015;17(6):854–61.  https://doi.org/10.1093/neuonc/nou348.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21(2):286–94.  https://doi.org/10.1158/1078-0432.ccr-14-1790.CrossRefPubMedGoogle Scholar
  16. 16.
    Hunn MK, Bauer E, Wood CE, Gasser O, Dzhelali M, Ancelet LR, et al. Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neurooncol. 2015;121(2):319–29.  https://doi.org/10.1007/s11060-014-1635-7.CrossRefPubMedGoogle Scholar
  17. 17.
    Ishikawa E, Muragaki Y, Yamamoto T, Maruyama T, Tsuboi K, Ikuta S, et al. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J Neurosurg. 2014;121(3):543–53.  https://doi.org/10.3171/2014.5.jns132392.CrossRefPubMedGoogle Scholar
  18. 18.
    Bloch O, Parsa AT. Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: a phase II, single arm trial. Neuro Oncol. 2014;16(5):758–9.  https://doi.org/10.1093/neuonc/nou054.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    • Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a Phase 1 dose-escalation trial. JAMA Oncol. 2017a;3(8):1094–101.  https://doi.org/10.1001/jamaoncol.2017.0184 This article reports the results from the first clinical study using CAR T cells for adoptive therapy of patients with glioblastoma. Infusion of autologous HER2-specific CAR-modified virus-specific T cells was safe and could be associated with clinical benefit. For the entire study cohort, median overall survival was 11.1 months from the first T cell infusion and 24.5 months from diagnosis.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, et al. Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol. 2016;18(8):1157–68.  https://doi.org/10.1093/neuonc/now026.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013;62(9):1499–509.  https://doi.org/10.1007/s00262-013-1453-3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer. 2014;2:4.  https://doi.org/10.1186/2051-1426-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    •• Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015a;519(7543):366–9.  https://doi.org/10.1038/nature14320 This article describes the results of clinical studies in glioblastoma patients which show that the immune and anti-tumor responses to dendritic cell vaccination are increased by pre-conditioning the vaccination site with a potent recall antigen such as tetanus/diptheria toxoid.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ et al. Dendritic cells enhance polyfunctionality of adoptively transferred t cells that target cytomegalovirus in glioblastoma. Cancer Res 2018;78(1):256–64. doi: https://doi.org/10.1158/0008-5472.can-17-0469.CrossRefGoogle Scholar
  25. 25.
    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016b;375(26):2561–9.  https://doi.org/10.1056/NEJMoa1610497.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kong DS, Nam DH, Kang SH, Lee JW, Chang JH, Kim JH, et al. Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget. 2017;8(4):7003–13.  https://doi.org/10.18632/oncotarget.12273.CrossRefPubMedGoogle Scholar
  27. 27.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.  https://doi.org/10.1158/1078-0432.ccr-15-0428.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol. 2014;16(10):1304–12.  https://doi.org/10.1093/neuonc/nou045.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74(13):3466–76.  https://doi.org/10.1158/0008-5472.can-14-0296.CrossRefPubMedGoogle Scholar
  30. 30.
    Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a Phase 1 dose-escalation trial. JAMA Oncol. 2017b;3(8):1094–101.  https://doi.org/10.1001/jamaoncol.2017.0184.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reardon DA, Groot JFD, Colman H, Jordan JT, Daras M, Clarke JL, et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol. 2016d;34(15_suppl):2010.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2010.CrossRefGoogle Scholar
  32. 32.
    Sahebjam S, Johnstone PA, Forsyth PAJ, Arrington J, Vrionis FD, Etame AB, et al. Safety and antitumor activity of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab (Pembro) and bevacizumab (Bev) in patients (pts) with recurrent high grade gliomas: preliminary results from phase I study. J Clin Oncol. 2016b;34(15_suppl):2041.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2041.CrossRefGoogle Scholar
  33. 33.
    Reardon DA, Sampson JH, Sahebjam S, Lim M, Baehring JM, Vlahovic G, et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol. 2016c;34(15_suppl):2014.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2014.CrossRefGoogle Scholar
  34. 34.
    Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61.  https://doi.org/10.1056/NEJMoa1716435.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tejada S, Diez-Valle R, Dominguez PD, Patino-Garcia A, Gonzalez-Huarriz M, Fueyo J, et al. DNX-2401, an oncolytic virus, for the treatment of newly diagnosed diffuse intrinsic pontine gliomas: a case report. Front Oncol. 2018;8:61.  https://doi.org/10.3389/fonc.2018.00061.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016;18(8):1137–45.  https://doi.org/10.1093/neuonc/now002.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ji N, Weng D, Liu C, Gu Z, Chen S, Guo Y, et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget. 2016;7(4):4369–78.  https://doi.org/10.18632/oncotarget.6737.CrossRefPubMedGoogle Scholar
  38. 38.
    Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22(5):1048–55.  https://doi.org/10.1038/mt.2014.22.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther. 2014;22(5):1056–62.  https://doi.org/10.1038/mt.2014.21.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Westphal M, Yla-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(9):823–33.  https://doi.org/10.1016/s1470-2045(13)70274-2.CrossRefPubMedGoogle Scholar
  41. 41.
    Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788(4):842–57.  https://doi.org/10.1016/j.bbamem.2008.10.022.CrossRefPubMedGoogle Scholar
  42. 42.
    Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, del Zoppo GJ, Doolittle ND, et al. Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab. 2013;33(1):13–21.  https://doi.org/10.1038/jcbfm.2012.153.CrossRefPubMedGoogle Scholar
  43. 43.
    Miyauchi JT, Tsirka SE. Advances in immunotherapeutic research for glioma therapy. J Neurol. 2018;265(4):741–56.  https://doi.org/10.1007/s00415-017-8695-5.CrossRefPubMedGoogle Scholar
  44. 44.
    •• Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017a;18(10):1373–85.  https://doi.org/10.1016/S1470-2045(17)30517-X This article reports the results of the most comprehensive study of patients with EGFRvIII-expressing glioblastoma done so far. This study did not show a survival benefit for patients with EGFRvIII-positive glioblastoma who received rindopepimut, a vaccine targeting the EGFR deletion mutation EGFRvIII, with temozolomide compared to patients who received a control and highlights the need for combinatinatorial approaches in order to show efficacy of immunotherapy in glioblastoma.CrossRefPubMedGoogle Scholar
  45. 45.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi: https://doi.org/10.1016/j.ccr.2009.12.020.CrossRefGoogle Scholar
  46. 46.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.  https://doi.org/10.1200/JCO.2010.28.6963.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Srivastava PK, Callahan MK, Mauri MM. Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther. 2009;9(2):179–86.  https://doi.org/10.1517/14712590802633918.CrossRefPubMedGoogle Scholar
  48. 48.
    Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A. 2004;101(16):6128–33.  https://doi.org/10.1073/pnas.0308180101.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wood CG, Mulders P. Vitespen: a preclinical and clinical review. Future Oncol. 2009;5(6):763–74.  https://doi.org/10.2217/fon.09.46.CrossRefPubMedGoogle Scholar
  50. 50.
    Ji N, Zhang Y, Liu Y, Xie J, Wang Y, Hao S, et al. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: a phase I, single-arm trial. JCI Insight. 2018;3(10).  https://doi.org/10.1172/jci.insight.99145.
  51. 51.
    Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008;372(9633):145–54. doi: https://doi.org/10.1016/S0140-6736(08)60697-2.CrossRefGoogle Scholar
  52. 52.
    Kwek SS, Lewis J, Zhang L, Weinberg V, Greaney SK, Harzstark AL et al. Preexisting levels of CD4 T cells expressing PD-1 are related to overall survival in prostate cancer patients treated with ipilimumab. Cancer Immunol Res 2015;3(9):1008–16. doi: https://doi.org/10.1158/2326-6066.CIR-14-0227.CrossRefGoogle Scholar
  53. 53.
    Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest. 2007;117(7):1902–13.  https://doi.org/10.1172/JCI30966.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Berd D, Sato T, Maguire HC, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol. 2004;22(3):403–15.  https://doi.org/10.1200/JCO.2004.06.043.CrossRefPubMedGoogle Scholar
  55. 55.
    Hsueh EC, Morton DL. Antigen-based immunotherapy of melanoma: canvaxin therapeutic polyvalent cancer vaccine. Semin Cancer Biol. 2003;13(6):401–7.  https://doi.org/10.1016/j.semcancer.2003.09.003.CrossRefPubMedGoogle Scholar
  56. 56.
    Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines. 2003;2(3):353–68.  https://doi.org/10.1586/14760584.2.3.353.CrossRefPubMedGoogle Scholar
  57. 57.
    Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142.  https://doi.org/10.1186/s12967-018-1507-6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15.  https://doi.org/10.1158/1078-0432.ccr-10-2563.CrossRefPubMedGoogle Scholar
  59. 59.
    Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg. 2010;113(2):310–8.  https://doi.org/10.3171/2010.2.jns091607.CrossRefPubMedGoogle Scholar
  60. 60.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.  https://doi.org/10.1186/1476-4598-5-67.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T, et al. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer. 2011;117(1):162–74.  https://doi.org/10.1002/cncr.25581.CrossRefPubMedGoogle Scholar
  62. 62.
    Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 2012;14(3):246–55. doi: https://doi.org/10.1093/neuonc/nor227.CrossRefGoogle Scholar
  63. 63.
    Ranganathan P, Clark PA, Kuo JS, Salamat MS, Kalejta RF. Significant association of multiple human cytomegalovirus genomic loci with glioblastoma multiforme samples. J Virol. 2012;86(2):854–64.  https://doi.org/10.1128/jvi.06097-11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, RE ML, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol. 2008;10(1):10–8.  https://doi.org/10.1215/15228517-2007-035.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62(12):3347–50.PubMedGoogle Scholar
  66. 66.
    Mitchell DA, Sayour EJ, Reap E, Schmittling R, De Leon G, Norberg P, et al. Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res. 2015c;3(4):320–5.  https://doi.org/10.1158/2326-6066.cir-14-0100.CrossRefPubMedGoogle Scholar
  67. 67.
    Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL, et al. Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood. 2011;118(11):3003–12.  https://doi.org/10.1182/blood-2011-02-334,565.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7(2):e31046.  https://doi.org/10.1371/journal.pone.0031046.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res. 2006;12(14 Pt 1):4294–305.  https://doi.org/10.1158/1078-0432.ccr-06-0053.CrossRefPubMedGoogle Scholar
  70. 70.
    Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ, et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol. 2006;176(6):3301–5.CrossRefGoogle Scholar
  71. 71.
    •• Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015a;15(8):486–99.  https://doi.org/10.1038/nri3862 This comprehensive review describes recent advances which have provided a better molecular understanding of the deterioration of T cell function, or exhaustion, and revealed new therapeutic targets for persisting infections and cancer.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol. 2003;21(20):3826–35.  https://doi.org/10.1200/jco.2003.04.042.CrossRefPubMedGoogle Scholar
  73. 73.
    Artene SA, Turcu-Stiolica A, Ciurea ME, Folcuti C, Tataranu LG, Alexandru O, et al. Comparative effect of immunotherapy and standard therapy in patients with high grade glioma: a meta-analysis of published clinical trials. Sci Rep. 2018;8(1):11800.  https://doi.org/10.1038/s41598-018-30,296-x.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ehtesham M, Kabos P, Gutierrez MA, Samoto K, Black KL, Yu JS. Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J Immunother. 2003;26(2):107–16.CrossRefGoogle Scholar
  75. 75.
    Sampson JH, Mitchell DA. Vaccination strategies for neuro-oncology. Neuro Oncol. 2015;17(Suppl 7):vii15–25.  https://doi.org/10.1093/neuonc/nov159.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Maxwell R, Luksik AS, Garzon-Muvdi T, Lim M. The potential of cellular- and viral-based immunotherapies for malignant glioma-dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses. Curr Neurol Neurosci Rep. 2017;17(6):50.  https://doi.org/10.1007/s11910-017-0754-x.CrossRefPubMedGoogle Scholar
  77. 77.
    Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064–75.  https://doi.org/10.1093/neuonc/nou307.CrossRefPubMedGoogle Scholar
  78. 78.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015b;15(8):486–99.  https://doi.org/10.1038/nri3862.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M, et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol. 1999;45(2):141–57.CrossRefGoogle Scholar
  80. 80.
    Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. 2014a;20(10):2684–94. doi: https://doi.org/10.1158/1078-0432.CCR-13-3268.CrossRefGoogle Scholar
  81. 81.
    Nair SK, Sampson JH, Mitchell DA. Immunological targeting of cytomegalovirus for glioblastoma therapy. Oncoimmunology. 2014b;3:e29289.  https://doi.org/10.4161/onci.29289.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nair DLG, Boczkowski D, Schmittling R, Xie W, Archer G, et al. Targeting cytomegalovirus (CMV) antigens for GBM immunotherapy. J Immunother Cancer. 2013;1(Suppl 1):P270.  https://doi.org/10.1186/2051-1426-1-s1-p270.CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Flores C, Pham C, Snyder D, Yang S, Sanchez-Perez L, Sayour E, et al. Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncoimmunology. 2015;4(3):e994374.  https://doi.org/10.4161/2162402X.2014.994374.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wildes TJ, Grippin A, Dyson KA, Wummer BM, Damiani DJ, Abraham RS, et al. Cross-talk between T cells and hematopoietic stem cells during adoptive cellular therapy for malignant glioma. Clin Cancer Res. 2018.  https://doi.org/10.1158/1078-0432.CCR-17-3061.CrossRefGoogle Scholar
  85. 85.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.  https://doi.org/10.1126/science.1129003.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    • Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–57.  https://doi.org/10.1084/jem.20171046 This article describes the identification of a novel HLA-A*02:01-restricted neoantigen epitope encompassing the H3.3K27M mutation present in the majority of diffuse midline glioma in children and young adults. Furthermore, the study highlights the cloning of a high-affinity T cell receptor that specifically recognizes the H3.3K27M epitope endogenously expressed by glioma cells.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.  https://doi.org/10.1182/blood-2009-03-211,714.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.  https://doi.org/10.1097/CJI.0b013e3182829903.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.  https://doi.org/10.1182/blood-2013-03-490,565.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29(7):917–24. doi: https://doi.org/10.1200/JCO.2010.32.2537.CrossRefGoogle Scholar
  91. 91.
    Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–57. doi: https://doi.org/10.1084/jem.20171046.CrossRefGoogle Scholar
  92. 92.
    •• Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016a;375(26):2561–9.  https://doi.org/10.1056/NEJMoa1610497 This is the first case report indicating the feasibility of using chimeric antigen receptor T cells (targeting the IL-13α2 receptor), in patients with recurrent glioblastoma. This approach had a potent effect, causing the tumors to be reduced in volume by 77–100%, and this response was sustained for 7.5 months. However, recurrence eventually occurred, and preliminary results suggested that these tumors had reduced IL-13α2 expression.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res. 1999;5(5):985–90.PubMedGoogle Scholar
  94. 94.
    Wykosky J, Gibo DM, Stanton C, Debinski W. Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res. 2008;14(1):199–208.  https://doi.org/10.1158/1078-0432.ccr-07-1990.CrossRefPubMedGoogle Scholar
  95. 95.
    Curtis SA, Cohen JV, Kluger HM. Evolving immunotherapy approaches for renal cell carcinoma. Curr Oncol Rep. 2016;18(9):57.  https://doi.org/10.1007/s11912-016-0542-9.CrossRefPubMedGoogle Scholar
  96. 96.
    Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L. Immunotherapy comes of age in lung cancer. Clin Lung Cancer. 2017;18(1):13–22.  https://doi.org/10.1016/j.cllc.2016.06.006.CrossRefPubMedGoogle Scholar
  97. 97.
    •• Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016a;17(7):976–83.  https://doi.org/10.1016/s1470-2045(16)30053-5 This articles describes the results of a single-center phase II trial showing, for the first time, that PD-1 inhibitor pembrolizumab is active in untreated or progressive brain metastases in melanoma and non-small cell lung cancer, with an acceptable safety profile. These findings suggests that systemic immunotherapy might be effective for patients with untreated or progressive brain metastases and that pembrolizumab might be tested in the treatment of primary brain tumors.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    •• Rosell R, Karachaliou N. Trends in immunotherapy for brain metastases. Lancet Oncol. 2016;17(7):859–60.  https://doi.org/10.1016/S1470-2045(16)30091-2 This article summarizes the results of the study by Goldberg and colleagues, in which pembrolizumab was used as a treatment for brain metastases in patients with melanoma and non-small-cell lung cancer, highlighting that treatment with anti-PD-1 antibodies is a promising new immunotherapeutic approach.CrossRefPubMedGoogle Scholar
  99. 99.
    Schoppy DW, Sunwoo JB. Immunotherapy for head and neck squamous cell carcinoma. Hematol Oncol Clin North Am. 2015;29(6):1033–43.  https://doi.org/10.1016/j.hoc.2015.07.009.CrossRefPubMedGoogle Scholar
  100. 100.
    Raju S, Joseph R, Sehgal S. Review of checkpoint immunotherapy for the management of non-small cell lung cancer. Immunotargets Ther. 2018;7:63–75.  https://doi.org/10.2147/ITT.S125070.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Badami S, Upadhaya S, Velagapudi RK, Mikkilineni P, Kunwor R, Al Hadidi S, et al. Clinical and molecular characteristics associated with survival in advanced melanoma treated with checkpoint inhibitors. J Oncol. 2018;2018:6279871.  https://doi.org/10.1155/2018/6279871.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Rijnders M, de Wit R, Boormans JL, Lolkema MPJ, van der Veldt AAM. Systematic review of immune checkpoint inhibition in urological cancers. Eur Urol. 2017;72(3):411–23.  https://doi.org/10.1016/j.eururo.2017.06.012.CrossRefPubMedGoogle Scholar
  103. 103.
    • Reardon DA, Groot JFD, Colman H, Jordan JT, Daras M, Clarke JL, et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol. 2016a;34(15_suppl):2010.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2010 This is the first study to report the safety/tolerability of combining PD-1 inhibition with pembrolizumab and VEGF blockade using bevacizumab in a multicenter, randomized phase 2 clinical trial in patients with glioblastoma.CrossRefGoogle Scholar
  104. 104.
    • Sahebjam S, Johnstone PA, Forsyth PAJ, Arrington J, Vrionis FD, Etame AB, et al. Safety and antitumor activity of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab (Pembro) and bevacizumab (Bev) in patients (pts) with recurrent high grade gliomas: preliminary results from phase I study. J Clin Oncol. 2016a;34(15_suppl):2041.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2041 This article reports preliminary data of a phase 1 clinical trial demonstrating acceptable toxicity when combining of HFSRT with Pembro and Bev in six pts with recurrent glioblastoma as well as durable disease control in three pts.CrossRefGoogle Scholar
  105. 105.
    Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016b;17(7):976–83.  https://doi.org/10.1016/s1470-2045(16)30053-5.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    •• Reardon DA, Sampson JH, Sahebjam S, Lim M, Baehring JM, Vlahovic G, et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol. 2016b;34(15_suppl):2014.  https://doi.org/10.1200/JCO.2016.34.15_suppl.2014 This article reports updated results from the first large randomized phase 3 clinical trial of PD pathway inhibition in the setting of GBM, including a comparison of nivo, an anti-programmed cell death-1 (PD-1) monoclonal antibody, and the anti-CTLA-4 antibody ipi in the treatment of recurrent disease.CrossRefGoogle Scholar
  107. 107.
    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65.  https://doi.org/10.1016/S1470-2045(12)70090-6.CrossRefPubMedGoogle Scholar
  108. 108.
    Di Giacomo AM, Ascierto PA, Queirolo P, Pilla L, Ridolfi R, Santinami M, et al. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol. 2015;26(4):798–803.  https://doi.org/10.1093/annonc/mdu577.CrossRefPubMedGoogle Scholar
  109. 109.
    Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 2016;18(2):195–205.  https://doi.org/10.1093/neuonc/nov172.CrossRefPubMedGoogle Scholar
  110. 110.
    Mu L, Long Y, Yang C, Jin L, Tao H, Ge H, et al. The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci. 2018;11:82.  https://doi.org/10.3389/fnmol.2018.00082.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations