Advertisement

Precision Neuro-oncology: the Role of Genomic Testing in the Management of Adult and Pediatric Gliomas

  • Lori A. Ramkissoon
  • Nicholas Britt
  • Alexander Guevara
  • Emily Whitt
  • Eric Severson
  • Pratheesh Sathyan
  • Laurie Gay
  • Julia Elvin
  • Jeffrey S. Ross
  • Charlotte Brown
  • Kimberly Stogner-Underwood
  • Ryan Mott
  • David Kram
  • Roy Strowd
  • Glenn J. Lesser
  • Shakti H. RamkissoonEmail author
Neuro-oncology (GJ Lesser, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Opinion statement

In recent years, large-scale genomic studies have expanded our knowledge regarding genomic drivers in tumors of the central nervous system. While histopathologic analysis of brain tumors remains the primary method for tumor classification, the clinical utility of molecular and genomic testing to support and/or complement tumor classification continues to expand. This approach enhances diagnostic accuracy and provides clinicians with objective data to facilitate discussions regarding prognosis and treatment decisions, including selection of clinical trials. Ensuring accurate diagnoses is fundamental to the management of brain tumor patients. However, given the morphologic overlap among primary brain tumors, genomic data can be used to help distinguish tumor lineage. In its clearest form, we have embraced the concept of an integrated diagnosis, which combines traditional histopathology findings with molecular and genomic data. Patient prognosis varies significantly based on a tumor’s genomic profile. For neuro-oncology patients, outcome studies linking diagnoses with genomic profiles show significant differences based on tumor biomarkers such as IDH1/2, H3F3A, BRAF, and CDKN2A and TERT status. Therefore, easy access to reliable genomic data is important in understanding a patient’s disease and developing a clinical strategy wherein targeted molecular or immune therapies can be incorporated into the discussion.

Keywords

Glioma Comprehensive genomic profiling Targeted therapy Immunotherapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Lori A. Ramkissoon declares that she has no conflict of interest.

Nicholas Britt was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Alexander Guevara was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Emily Whitt was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Eric Severson was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Pratheesh Sathyan was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Laurie Gay was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Julia Elvin was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Jeffrey S. Ross was affiliated with Foundation Medicine at the time this article was written, and therefore received compensation accordingly, and is also a stock owner.

Charlotte Brown was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Kim Stogner-Underwood declares that she has no conflict of interest.

Ryan Mott declares that he has no conflict of interest.

David Kram declares that he has no conflict of interest.

Roy Strowd declares that he has no conflict of interest.

Glenn J. Lesser has received clinical trial support from Novartis, Vascular Biogenics, Incyte, Pfizer, NovoCure, NewLink Genetics, and Orbus; has served as chair of the Data Safety Monitoring Board for Stemline Therapeutics; and has served on a consultant board for Insys Therapeutics.

Shakti H. Ramkissoon was affiliated with Foundation Medicine at the time this article was written and therefore received compensation accordingly.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance and •• Of major importance

  1. 1.
    Noone A.M. HN, Krapcho M, Miller D, Brest A, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA SEER Cancer statistics review, 1975–2015 Bethesda, MD: National Cancer Institute; 2017 [Available from: https://seer.cancer.gov/csr/1975_2015/.
  2. 2.
    Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109(1):93–108.CrossRefPubMedGoogle Scholar
  3. 3.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17(Suppl 4):iv1–iv62.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pui CH, Gajjar AJ, Kane JR, Qaddoumi IA, Pappo AS. Challenging issues in pediatric oncology. Nat Rev Clin Oncol. 2011;8(9):540–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20. Summary of the current WHO Classification for brain tumors that highlights integration of molecular data into diagnostic classification.CrossRefPubMedGoogle Scholar
  6. 6.
    Ramkissoon SH, Bi WL, Schumacher SE, Ramkissoon LA, Haidar S, Knoff D, et al. Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. Neuro Oncol. 2015;17(10):1344–55.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Serrano J, Snuderl M. Whole genome DNA methylation analysis of human glioblastoma using Illumina BeadArrays. Methods Mol Biol. 2018;1741:31–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131(6):903–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J, et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist. 2017;22(12):1478–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol. 2017;19(7):986–96.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Northcott PA, Pfister SM, Jones DT. Next-generation (epi)genetic drivers of childhood brain tumors and the outlook for targeted therapies. Lancet Oncol. 2015;16(6):e293–302.CrossRefPubMedGoogle Scholar
  12. 12.
    Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, et al. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol. 2017;19(6):750–61.PubMedGoogle Scholar
  13. 13.
    Bandopadhayay P, Ramkissoon LA, Jain P, Bergthold G, Wala J, Zeid R, et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet. 2016;48(3):273–82.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ramkissoon LA, Horowitz PM, Craig JM, Ramkissoon SH, Rich BE, Schumacher SE, et al. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A. 2013;110(20):8188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Collins VP, Jones DT, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):775–88.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jones DT, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci. 2012;69(11):1799–811.CrossRefPubMedGoogle Scholar
  17. 17.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ, et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol. 2010;12(7):621–30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Listernick R, Charrow J, Gutmann DH. Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet. 1999;89(1):38–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602–12.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tatevossian RG, Tang B, Dalton J, Forshew T, Lawson AR, Ma J, et al. MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol. 2010;120(6):731–43.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ, et al. Long-term outcome of 4040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer. 2014;61(7):1173–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miller C, Guillaume D, Dusenbery K, Clark HB, Moertel C. Report of effective trametinib therapy in 2 children with progressive hypothalamic optic pathway pilocytic astrocytoma: documentation of volumetric response. J Neurosurg Pediatr. 2017;19(3):319–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol. 2015;33(9):1015–22.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    •• Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol. 2017;35(25):2934–41. Important study demonstrating the prognostic impact of BRAF V600E mutations in pediatric low grade gliomas.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014;14(10).Google Scholar
  31. 31.
    •• Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31. Seminal study reporting H3F3A mutations in pediatric high-grade glioma.CrossRefPubMedGoogle Scholar
  32. 32.
    Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 2013;45(12):1479–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. 2017;19(2):153–61.PubMedGoogle Scholar
  35. 35.
    •• Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, Siddaway R, et al. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun. 2016;4(1):93. Important study demonstrating the prognostic impact of H3F3A K27M on overall survival in pediatric gliomas.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    • Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98. Large clinical study reporting genomic characteristics specific for adult low-grade gioma diagnoses.CrossRefGoogle Scholar
  37. 37.
    Cryan JB, Haidar S, Ramkissoon LA, Bi WL, Knoff DS, Schultz N, et al. Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget. 2014;5(18):8083–92.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–63.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Juratli TA, Kirsch M, Robel K, Soucek S, Geiger K, von Kummer R, et al. IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. J Neurooncol. 2012;108(3):403–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226(1):7–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Sahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol. 2014;128(4):551–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  45. 45.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56.e6CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Johanns TM, Ansstas G, Dahiya S. BRAF-targeted therapy in the treatment of BRAF-mutant high-grade gliomas in adults. J Natl Compr Canc Netw. 2018;16(4):451–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Johanns TM, Ferguson CJ, Grierson PM, Dahiya S, Ansstas G. Rapid clinical and radiographic response with combined dabrafenib and trametinib in adults with BRAF-mutated high-grade glioma. J Natl Compr Canc Netw. 2018;16(1):4–10.CrossRefPubMedGoogle Scholar
  49. 49.
    Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.CrossRefPubMedGoogle Scholar
  51. 51.
    Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535–43.CrossRefPubMedGoogle Scholar
  52. 52.
    Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018.Google Scholar
  53. 53.
    Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.CrossRefPubMedGoogle Scholar
  54. 54.
    Mueller KT, Maude SL, Porter DL, Frey N, Wood P, Han X, et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood. 2017;130(21):2317–25.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018.Google Scholar
  56. 56.
    Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol. 2014;16(10):1304–12.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tu M, Wange W, Cai L, Zhu P, Gao Z, Zheng W. IL-13 receptor alpha2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol. 2016;37(11):14701–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399).Google Scholar
  62. 62.
    Wagner LM, Adams VR. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. Onco Targets Ther. 2017;10:2097–106.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.CrossRefPubMedGoogle Scholar
  64. 64.
    Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–e51.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Scheel AH, Ansen S, Schultheis AM, Scheffler M, Fischer RN, Michels S, et al. PD-L1 expression in non-small cell lung cancer: correlations with genetic alterations. Oncoimmunology. 2016;5(5):e1131379.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6(11):1230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343(6167):189–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim J, Lee IH, Cho HJ, Park CK, Jung YS, Kim Y, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28(3):318–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lori A. Ramkissoon
    • 1
  • Nicholas Britt
    • 2
  • Alexander Guevara
    • 2
  • Emily Whitt
    • 2
  • Eric Severson
    • 2
  • Pratheesh Sathyan
    • 3
  • Laurie Gay
    • 3
  • Julia Elvin
    • 3
  • Jeffrey S. Ross
    • 3
    • 4
  • Charlotte Brown
    • 2
  • Kimberly Stogner-Underwood
    • 5
  • Ryan Mott
    • 5
  • David Kram
    • 6
  • Roy Strowd
    • 7
  • Glenn J. Lesser
    • 7
  • Shakti H. Ramkissoon
    • 2
    • 5
    Email author
  1. 1.University of North Carolina School of MedicineChapel HillUSA
  2. 2.Foundation Medicine, IncMorrisvilleUSA
  3. 3.Foundation Medicine, IncCambridgeUSA
  4. 4.SUNY Upstate Medical UniversitySyracuseUSA
  5. 5.Department of PathologyWake Forest School of MedicineWinston-SalemUSA
  6. 6.Section of Pediatric Hematology-Oncology, Department of PediatricsWake Forest School of MedicineWinston-SalemUSA
  7. 7.Section of Hematology-OncologyWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations