Desmoid-Type Fibromatosis: Who, When, and How to Treat

  • Javier Martínez TruferoEmail author
  • Isabel Pajares Bernad
  • Irene Torres Ramón
  • Jorge Hernando Cubero
  • Roberto Pazo Cid
Sarcoma (SH Okuno, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sarcoma

Opinion statement

Desmoid-type fibromatosis is a sarcoma subtype that gathers some singular characteristics, making it a difficult challenge to face in clinical practice. Despite its excellent survival prognosis, these tumors may be unpredictable, ranging from an asymptomatic indolent course to persistent, local, and extended recurrences that significantly impair quality of life. Although surgery was initially considered the first elective treatment, collected published data during the past few years are now pointing to the “wait and see” approach as a reasonable initial strategy because many patients can live a long life with the disease without having symptoms. When symptoms appear or there is a risk of functional impairment, a wide spectrum of therapies (local and systemic) can be useful in improving symptoms and controlling the disease. Because of the low incidence of desmoid-type fibromatosis, there is scarce scientific evidence supporting any specific treatment. Nonetheless, if volumetric responses are needed, chemotherapy may be a reasonable early option. However, if long-term control of disease is desirable, hormonal therapy, NSAIDs, and TKIs are the likely treatments of choice. Recent new findings in the biologic development of these tumors, such as the role of Wnt/β-catenin dependent pathway, have shown that the prognostic information provided by specific CTNNB1 gene mutations and other genetic profiles can lead to better methods of selecting patients as candidates for other approaches. Based on recent research, the Notch pathway inhibition in DF is one of the most promising potential targets to explore. As an orphan disease, it is mandatory that as many patients as possible be included in clinical trials.


Desmoid-type Fibromatosis Desmoid Wait and see Beta-catenin CTNNB1 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Fletcher CDM, Bridge AJ, Hogendoorn P, et al. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 72–3.Google Scholar
  2. 2.
    Shields CJ, Winter DC, Kirwan WO, Redmond HP. Desmoid tumours. Eur J Surg Oncol. 2001;27(8):701–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Escobar C, Munker R, Thomas JO, Li BD, Burton GV. Update on desmoid tumors. Ann Oncol. 2012;23(3):562–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Kotiligam D, Lazar AJF, Pollock RE, et al. Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol. 2008;23:117–26.PubMedGoogle Scholar
  5. 5.
    Nieuwenhuis MH, Lefevre JH, Bülow S, Järvinen H, Bertario L, Kernéis S, Parc Y, Vasen HF. Family history, surgery, and APC mutation are risk factors for desmoid tumors in familial adenomatous polyposis: an international cohort study. Dis Colon Rectum. 2011;54:1229–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Amary MF, Pauwels P, Meulemans E, et al. Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol. 2007;31:1299–309.CrossRefPubMedGoogle Scholar
  7. 7.
    Lazar AJ, Tuvin D, Hajibashi S, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Varghese S, Braggio DA, Gillespie J, Toland AE, Pollock R, Mayerson J, Scharschmidt T, Iwenofu OH. TGF-β and CTGF are mitogenic output mediators of Wnt/β-catenin signaling in desmoid fibromatosis. Appl Immunohistochem Mol Morphol. 2016;18.Google Scholar
  9. 9.
    Sharma H, Sen S, Sheriff AK, et al. Characterization of apoptosis- related molecular changes in a desmoid tumor of the chest wall: report of a case. Surg Today. 2003;33:358–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Salas S, Brulard C, Terrier P, Ranchere-Vince D, Neuville A, Guillou L, Lae M, Leroux A, Verola O, Jean-Emmanuel K, Bonvalot S, Blay JY, Le Cesne A, Aurias A, Coindre JM, Chibon F. Gene expression profiling of desmoid tumors by cDNA microarrays and correlation with progression free survival. Clin Cancer Res. 2015;21(18):4194–200.CrossRefPubMedGoogle Scholar
  11. 11.
    Dufresne A, Paturel M, Alberti L, Philippon H, Duc A, Decouvelaere AV, Cassier P, Blay JY. Prediction of desmoid tumor progression using miRNA expression profiling. Cancer Sci. 2015;106(5):650–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Janinis J, Patriki M, Vinj L, et al. The pharmacological treatment of aggressive fibromatosis: a systematic review. Ann Oncol. 2003;14:181–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Deyrup AT, Tretiakova M, Montag AG. Estrogen receptor-beta expression in extraabdominal fibromatosis: an analysis of 40 cases. Cancer. 2006;106:208–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Lazar AJF, Hajibashi S, Lev D. Desmoid tumor: from surgical extirpation to molecular dissection. Curr Opin Oncol. 2009;21:352–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Bonvalot S, Eldweny H, Haddad V, et al. Extra-abdominal primary fibromatosis: aggressive management could be avoided in a subgroup of patients. Eur J Surg Oncol. 2008;34(4):462–8.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Salas S, Dufresne A, Bui B, et al. Prognostic factors influencing progression-free survival determined from a series of sporadic desmoid tumors: a wait-and-see policy according to tumor presentation. J Clin Oncol. 2011;29(26):3553–8. This study gives evidence that support the “wait and see” approach and offers clues to identify patients with higher risk of relapse.CrossRefPubMedGoogle Scholar
  17. 17.
    • Gronchi A, Colombo C, Le Pechoux C, et al. Sporadic desmoid-type fibromatosis: a stepwise approach to a non-metastasising neoplasm-a position paper from the Italian and the French Sarcoma Group. Ann Oncol. 2014;25:578–83. This is the first published consensus gathering two large European collaborative groups that shows a thorough review of current knowledge about this disease, supporting clearly the “wait and see” approach as first line.CrossRefPubMedGoogle Scholar
  18. 18.
    •• Kasper B, Baumgarten C, Bonvalot S, Haas R, Haller F, Hohenberger P, Moreau G, van der Graaf WT, Gronchi A, Desmoid Working Group. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients’ and professionals’ expertise—a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer. 2015;51(2):127–36. The most thorough collaborative international consensus, which gathers all published evidence, establishing specific recommendations based on the recent new knowledge.CrossRefPubMedGoogle Scholar
  19. 19.
    Bonvalot S, Desai A, Coppola S, et al. The treatment of desmoid tumors: a stepwise clinical approach. Ann Oncol. 2012;23(10):158–66.CrossRefGoogle Scholar
  20. 20.
    Kasper B, Strobel P, Hohenberger P. Desmoid tumor: clinical features and treatment options for advanced disease. Oncologist. 2011;16:682–93.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Martínez-Trufero J, Alvarez Alvarez R, Lopez Pousa A, Sevilla I, Sancho Marquez P, Orbegoso C, Cruz Jurado J, et al. Multidisciplinary treatment outcome of desmoid-type fibromatosis (DTF): a registry-based study from Spanish Group for Research on Sarcoma (GEIS). Ann Oncol. 2014;25(suppl_4):iv494–510.CrossRefGoogle Scholar
  22. 22.
    Nuyttens JJ, Rust PF, Thomas CR, et al. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors—a comparative review of 22 articles. Cancer. 2000;88:1517–23.CrossRefPubMedGoogle Scholar
  23. 23.
    • Keus RB, Nout RA, Blay JY, et al. Results of a phase II pilot study of moderate dose radiotherapy for inoperable desmoid-type fibromatosis-an EORTC STBSG and ROG study (EORTC 62991-22998). Ann Oncol. 2013;24:2672–6. This study adds definitively evidence to support the use of lower doses of radiotherapy in DF.CrossRefPubMedGoogle Scholar
  24. 24.
    Guadagnolo BA, Zagars GK, Ballo MT. Long-term outcomes for desmoid tumors treated with radiation therapy. Int J Radiat Oncol Biol Phys. 2008;71:441–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Bonvalot S, Rimareix F, Causeret S, et al. Hyperthermic isolated limb perfusion in locally advanced soft tissue sarcoma and progressive desmoid-type fibromatosis with TNF1 mg and melphalan (T1-M HILP) is safe and efficient. Ann Surg Oncol. 2009;16(12):3350–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Kujak JL, Liu PT, Johnson GB, et al. Early experience with percutaneous cryoablation ef extra-abdominal desmoid tumors. Skelet Radiol. 2010;39:175–82.CrossRefGoogle Scholar
  27. 27.
    • Garbay D, Le Cesne A, Penel N, et al. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann Oncol. 2012;23(1):182–6. This study is the most complete and thorough review about the role of cytotoxic chemotherapy in DF.CrossRefPubMedGoogle Scholar
  28. 28.
    Patel SR, Evans HL, Benjamin RS. Combination chemotherapy in adult desmoid tumors. Cancer. 1993;72(1):3244–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Van der Hul RL, Seynaeye C, van Geel BN, et al. Low dose methotrexate and vinblastine given weekly in patients with desmoid tumours is associated with major toxicity. Sarcoma. 2003;7:153–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weiss A, Horowitz S, Lackmen R. Therapy of desmoid tumors and fibromatosis using vinorelbine. Am J Clin Oncol. 1999;22(2):193–5.CrossRefPubMedGoogle Scholar
  31. 31.
    De Camargo VP, Keohan ML, D’ Adamo DR, et al. Clinical outcomes of systemic therapy for patients with deep fibromatosis (desmoid tumor). Cancer. 2010;116:2258–65.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gega M, Yanagi H, Yoshikawa R, et al. Successful chemotherapeutic modality of doxorubicin plus dacarbazine for the treatment of desmoid tumors in association with familial adenomatous polyposis. J Clin Oncol. 2006;24(1):102–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Constantinidou A, Jones RL, Scurr M, et al. Pegylated liposomal doxorubicin, and effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer. 2009;45:2930–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Wehl G, Rossler J, Otten JE, et al. REsponse of progresive fibromatosis to therapy with liposomal doxorubicin. Onkologie. 2004;27:552–6.PubMedGoogle Scholar
  35. 35.
    Azzarelli A, Gronchi A, Bertulli R, et al. Low-dose chemotherapy with methotrexate and vinblastine for patients with advanced aggressive fibromatosis. Cancer. 2001;92(5):1259–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Skapek SX, Ferguson WS, Granowetter L, et al. Vinblastine and methotrexate for desmoid fibromatosis in children: results of a Pediatric Oncology Group phase II trial. J Clin Oncol. 2007;25:501–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Lev D, Kotilingam D, Wei C, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25(13):1785–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Hansmann A, Adolph C, Vogel T, et al. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. Cancer. 2004;100:612–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Skapek SX, Anderson JR, Hill DA, et al. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a children’s oncology group (COG) phase II study. Pediatr Blood Cancer. 2013;60(7):1108–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Tanaka K, Yoshikawa R, Yanagi H, et al. Regression of sporadic intra-abdominal desmoid tumour following administration of non-steroidal anti-inflammatory drug. World J Surg Oncol. 2008;6:1–4.CrossRefGoogle Scholar
  41. 41.
    Waddell WR, Gerner RE. Indomethacin and ascorbate inhibit desmoid tumors. J Surg Oncol. 1980;15:85–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Signoroni S, Frattini M, Negri T, et al. Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. Clin Cancer Res. 2007;13:5034–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Heinrich MC, McArthur GA, Demetri GD, Joensuu H, Bono P, Herrmann R, Hirte H, Cresta S, Koslin DB, Corless CL, Dirnhofer S, van Oosterom AT, Nikolova Z, Dimitrijevic S, Fletcher JA. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J ClinOncol. 2006 Mar 1;24(7):1195–203.CrossRefGoogle Scholar
  44. 44.
    Penel N, Le Cesne A, Bui BN, Perol D, Brain EG, Ray-Coquard I, Guillemet C, Chevreau C, Cupissol D, Chabaud S, Jimenez M, Duffaud F, Piperno-Neumann S, Mignot L, Blay JY. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol. 2011 Feb;22(2):452–7.CrossRefPubMedGoogle Scholar
  45. 45.
    • Kasper B, Gruenwald V, Reichardt P, Bauer S, Hohenberger P, Haller F. Correlation of CTNNB1 mutation status with progression arrest rate in RECIST progressive desmoid-type fibromatosis treated with imatinib: translational research results from a phase 2 study of the German Interdisciplinary Sarcoma Group (GISG-01). Ann Surg Oncol. 2016;23(6):1924–7. First study that shows correlation between mutational profile on CTNNB1 and potential TKI efficacy.CrossRefPubMedGoogle Scholar
  46. 46.
    Gounder MM, Lefkowitz RA, Keohan ML, D’Adamo DR, Hameed M, Antonescu CR, Singer S, Stout K, Ahn L, Maki RG. Activity of sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res. 2011;17(12):4082–90.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Munhoz RR, Lefkowitz RA, Kuk D, Dickson MA, D’Angelo SP, Keohan ML, Chi P, Crago AM, Maki RG, Schwartz GK, Qin LX, Tap WD, Gounder MM. Efficacy of sorafenib in patients with desmoid-type fibromatosis. Journal of Clinical Oncology, 2016 ASCO Annual Meeting (June 3–7, 2016). Vol 34, No 15_suppl (May 20 Supplement), 2016:11065.Google Scholar
  48. 48.
    Martin-Liberal J, Benson C, McCarty H, Thway K, Messiou C, Judson I. Pazopanib is an active treatment in desmoid tumour/aggressive fibromatosis. Clin Sarcoma Res. 2013;3(1):13.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jo JC, Hong YS, Kim KP, Lee JL, Lee J, Park YS, Kim SY, Ryu JS, Lee JS, Kim TW. A prospective multicenter phase II study of sunitinib in patients with advanced aggressive fibromatosis. Investig New Drugs. 2014;32(2):369–76.CrossRefGoogle Scholar
  50. 50.
    Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernández Majada V, Grilli A, López-Bigas N, Bellora N, Albà MM, Torres F, Duñach M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Espinosa L. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A. 2009;106(15):6315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim HA, Koo BK, Cho JH, Kim YY, Seong J, Chang HJ, Oh YM, Stange DE, Park JG, Hwang D, Kong YY. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest. 2012;122(9):3248–59.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008;27(38):5099–109.CrossRefPubMedGoogle Scholar
  53. 53.
    Shang H, Braggio D, Lee YJ, Al Sannaa GA, Creighton CJ, Bolshakov S, Lazar AJ, Lev D, Pollock RE. Targeting the Notch pathway: a potential therapeutic approach for desmoid tumors. Cancer. 2015;121(22):4088–96.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gounder MM. Notch inhibition in desmoids: “sure it works in practice, but does it work in theory?”. Cancer. 2015;121(22):3933–7.CrossRefPubMedGoogle Scholar
  55. 55.
    • Messersmith WA, Shapiro GI, Cleary JM, Jimeno A, Dasari A, Huang B, Shaik MN, Cesari R, Zheng X, Reynolds JM, English PA, McLachlan KR, Kern KA, LoRusso PM. A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF 03084014. Clin Cancer Res. 2015;21(1):60–7. This study highlights the most promising new agent in the treatment of DF, based on the recently discovered role of Notch pathway in the development of these tumors.CrossRefPubMedGoogle Scholar
  56. 56.
    O’Sullivan Coyne GH, Kummar S, Do KT, Choyke PL, Turkbey B, Polley E, et al. Activity of PF-03084014 in adults with desmoid tumors/aggressive fibromatosis. J Clin Oncol 2016 34 (suppl; abstr 11028).Google Scholar
  57. 57.
    Pant S, Jones SF, Kurkjian CD, Infante JR, Moore KN, Burris HA, et al. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer. 2016;56:1–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Javier Martínez Trufero
    • 1
    Email author
  • Isabel Pajares Bernad
    • 1
  • Irene Torres Ramón
    • 1
  • Jorge Hernando Cubero
    • 1
  • Roberto Pazo Cid
    • 1
  1. 1.Medical Oncology DepartmentHospital Universitario Miguel ServetZaragozaSpain

Personalised recommendations