Deficient Mismatch Repair and the Role of Immunotherapy in Metastatic Colorectal Cancer

  • Dionisia Quiroga
  • H. Kim Lyerly
  • Michael A. MorseEmail author
Lower Gastrointestinal Cancers (AB Benson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Lower Gastrointestinal Cancers

Opinion statement

Division of colorectal cancers (CRCs) into molecular subsets yields important consequences for prognosis and therapeutic response. The microsatellite instability (MSI) immune subgroup, accounting for 15 % of early-stage and 3 % of metastatic CRCs, are a result of deficient cellular DNA mismatch repair (dMMR) mechanisms. dMMR CRCs are notable for greater survivability, yet lack of benefit from fluoropyrimidine-based therapy in early-stage disease as compared to proficient DNA mismatch repair (pMMR) CRCs but are substantially lethal when metastatic. The surging interest in cancer immunotherapy, particularly checkpoint blockade, has further led to a focus on MSI tumors, which are notable for their substantial T cell infiltrate. In this review, we will discuss the biologic underpinnings for the immunogenicity of dMMR CRC and the preclinical development of therapies intended to modulate this immune response. Next, we will discuss the previous and ongoing clinical trials specifically designed to evaluate immunotherapeutic treatment of dMMR CRCs. Building on the success of the early immune checkpoint inhibitor clinical trials for dMMR CRC, combinations with other anti-tumor immunotherapies may provide an even more robust response, thereby, creating an alternative treatment regimen for those who have failed standard therapies or possibly resulting in prophylactic therapies for patients with highly oncogenic hereditary mismatch repair deficiencies.


Immunotherapy Colorectal cancer Mismatch repair Microsatellite instability Immune checkpoint Tumor microenvironment 



This work was partially funded by a 2015 Conquer Cancer Foundation of the American Society of Clinical Oncology Medical Student Rotation award (D.Q.).

Compliance with Ethical Standards

Conflict of Interest

Dionisia Quiroga declares that she has no conflict of interest.

H. Kim Lyerly declares that he has no conflict of interest.

Michael A. Morse will be participating as a clinical investigator in the Keynote-177 trial sponsored by Merck Sharp & Dohme Corporation (NCT02563002), but will not be receiving any direct financial compensation. He has also received financial support through grants from Bristol-Myers Squibb, Merck, Aduro Biotech, AlphaVax, and Advaxis, and has received compensation from EMD Serono for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.•
    Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. Description of the CRC consensus molecular subtypes, including the MSI immune group.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Raut CP, Pawlik TM, Rodriguez-Bigas MA. Clinicopathologic features in colorectal cancer patients with microsatellite instability. Mutat Res. 2004;568:275–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Veigl ML, Kasturi L, Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A. 1998;95:8698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mensenkamp AR, Vogelaar IP, van Zelst-Stams WAG, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology. 2014;146:643–6.e8.PubMedCrossRefGoogle Scholar
  7. 7.
    Vasen HF, Wijnen JT, Menko FH, et al. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology. 1996;110:1020–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Wu Y, Berends MJ, Mensink RG, et al. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet. 1999;65:1291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008;135:419–28.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wu Y, Berends MJ, Post JG, et al. Germline mutations of EXO1 gene in patients with hereditary nonpolyposis colorectal cancer (HNPCC) and atypical HNPCC forms. Gastroenterology. 2001;120:1580–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Peltomäki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21:1174–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Akiyama Y, Iwanaga R, Ishikawa T, et al. Mutations of the transforming growth factor-beta type II receptor gene are strongly related to sporadic proximal colon carcinomas with microsatellite instability. Cancer. 1996;78:2478–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Ward R, Meagher A, Tomlinson I, et al. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut. 2001;48:821–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Park JH, Powell AG, Roxburgh CSD, Horgan PG, McMillan DC, Edwards J. Mismatch repair status in patients with primary operable colorectal cancer: associations with the local and systemic tumour environment. Br J Cancer. 2016. doi: 10.1038/bjc.2016.17.PubMedCentralGoogle Scholar
  19. 19.
    Greenson JK, Bonner JD, Ben-Yzhak O, et al. Phenotype of microsatellite unstable colorectal carcinomas: well-differentiated and focally mucinous tumors and the absence of dirty necrosis correlate with microsatellite instability. Am J Surg Pathol. 2003;27:563–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer. 2001;91:2417–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Malesci A, Laghi L, Bianchi P, et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res. 2007;13:3831–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein J, Tran B, Ensor J, et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann Oncol. 2014;25:1032–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20:5322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.•
    Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43–51. First article to reveal MSD CRCs as having increased expression of immune checkpoint molecules.PubMedCrossRefGoogle Scholar
  25. 25.
    Bodmer W, Bishop T, Karran P. Genetic steps in colorectal cancer. Nat Genet. 1994;6:217–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Saeterdal I, Gjertsen MK, Straten P, Eriksen JA, Gaudernack G. A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells. Cancer Immunol Immunother. 2001;50:469–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M. Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun. 2004;4:14.PubMedGoogle Scholar
  28. 28.
    Ripberger E, Linnebacher M, Schwitalle Y, Gebert J, von Knebel Doeberitz M. Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol. 2003;23:415–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Linnebacher M, Wienck A, Boeck I, Klar E. Identification of an MSI-H tumor-specific cytotoxic T cell epitope generated by the (−1) frame of U79260(FTO). J Biomed Biotechnol. 2010;2010:841451.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Garbe Y, Maletzki C, Linnebacher M. An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes. PLoS One. 2011;6:e26517.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Linnebacher M, Gebert J, Rudy W, et al. Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer. 2001;93:6–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Schwitalle Y, Kloor M, Eiermann S, et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008;134:988–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Bauer K, Michel S, Reuschenbach M, Nelius N, von Knebel DM, Kloor M. Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer. Fam Cancer. 2011;10:557–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Sandel MH, Dadabayev AR, Menon AG, et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res. 2005;11:2576–82.PubMedCrossRefGoogle Scholar
  35. 35.
    De Smedt L, Lemahieu J, Palmans S, et al. Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis. Br J Cancer. 2015;113:500–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Reuschenbach M, Kloor M, Morak M, et al. Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer. 2010;9:173–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Genuardi M, Viel A, Bonora D, et al. Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility. Hum Genet. 1998;102:15–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Goel A, Li M-S, Nagasaka T, et al. Association of JC virus T-antigen expression with the methylator phenotype in sporadic colorectal cancers. Gastroenterology. 2006;130:1950–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Iwata T, Fujita T, Hirao N, et al. Frequent immune responses to a cancer/testis antigen, CAGE, in patients with microsatellite instability-positive endometrial cancer. Clin Cancer Res. 2005;11:3949–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Guidoboni M, Gafà R, Viel A, et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am J Pathol. 2001;159:297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dolcetti R, Viel A, Doglioni C, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154:1805–13.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Michael-Robinson JM, Pandeya N, Cummings MC, et al. Fas ligand and tumour counter-attack in colorectal cancer stratified according to microsatellite instability status. J Pathol. 2003;201:46–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–4.PubMedGoogle Scholar
  44. 44.
    Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Prall F, Dührkop T, Weirich V, et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol. 2004;35:808–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Michel S, Benner A, Tariverdian M, et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer. 2008;99:1867–73.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Quinn E, Hawkins N, Yip YL, Suter C, Ward R. CD103+ intraepithelial lymphocytes—a unique population in microsatellite unstable sporadic colorectal cancer. Eur J Cancer. 2003;39:469–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.PubMedCrossRefGoogle Scholar
  50. 50.
    Hanke T, Melling N, Simon R, et al. High intratumoral FOXP3+ T regulatory cell (Tregs) density is an independent good prognosticator in nodal negative colorectal cancer. Int J Clin Exp Pathol. 2015;8:8227–35.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 2011;60:909–18.PubMedCrossRefGoogle Scholar
  52. 52.
    Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101:2620–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096–103.PubMedCrossRefGoogle Scholar
  54. 54.
    Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92:4150–66.PubMedGoogle Scholar
  55. 55.
    Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Pogue-Geile K, Yothers G, Taniyama Y, et al. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J Natl Cancer Inst. 2013;105:989–92.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Dierssen JWF, de Miranda NFCC, Ferrone S, et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer. 2007;7:33.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–8.PubMedCrossRefGoogle Scholar
  59. 59.••
    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. Phase II clinical trial showing efficacy of anti-PD-1 inhibitor treatment in advanced dMMR CRC patients.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schulze T, Kemmner W, Weitz J, Wernecke K-D, Schirrmacher V, Schlag PM. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother. 2009;58:61–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Nair SK, Morse M, Boczkowski D, et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg. 2002;235:540–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Liu K-J, Wang C-C, Chen L-T, et al. Generation of carcinoembryonic antigen (CEA)-specific T-cell responses in HLA-A*0201 and HLA-A*2402 late-stage colorectal cancer patients after vaccination with dendritic cells loaded with CEA peptides. Clin Cancer Res. 2004;10:2645–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Morse MA, Chapman R, Powderly J, et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin Cancer Res. 2011;17:4844–53.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Morse MA, Chaudhry A, Gabitzsch ES, et al. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother. 2013;62:1293–301.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kaufman HL, Lenz H-J, Marshall J, et al. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin Cancer Res. 2008;14:4843–9.PubMedCrossRefGoogle Scholar
  67. 67.••
    de Weger VA, Turksma AW, Voorham QJM, et al. Clinical effects of adjuvant active specific immunotherapy differ between patients with microsatellite-stable and microsatellite-instable colon cancer. Clin Cancer Res. 2012;18:882–9. Retrospective analysis of pMMR and dMMR CRC patients who were administered a tumor cell vaccine.PubMedCrossRefGoogle Scholar
  68. 68.
    Vermorken JB, Claessen AM, van Tinteren H, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet. 1999;353:345–50.PubMedCrossRefGoogle Scholar
  69. 69.
    Reuschenbach M, Dörre J, Waterboer T, et al. A multiplex method for the detection of serum antibodies against in silico-predicted tumor antigens. Cancer Immunol Immunother. 2014;63:1251–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Saul A, Lawrence G, Smillie A, et al. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. Vaccine. 1999;17:3145–59.PubMedCrossRefGoogle Scholar
  71. 71.
    Kloor M, Reuschenbach M, Karbach J, Rafiyan M, Al-Batran S-E, Pauligk C, et al. Vaccination of MSI-H colorectal cancer patients with frameshift peptide antigens: a phase I/IIa clinical trial. J. Clin. Oncol. 33, (suppl; abstr 3020) (2015).Google Scholar
  72. 72.
    He L, Deng T, Luo H-S. Association between cytotoxic T-lymphocyte antigen-4 + 49A/G polymorphism and colorectal cancer risk: a meta-analysis. Int J Clin Exp Med. 2015;8:3752–60.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Chung KY, Gore I, Fong L, et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol. 2010;28:3485–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shi S-J, Wang L-J, Wang G-D, et al. B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. PLoS One. 2013;8:e76012.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19:462–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Campesato LF, Barroso-Sousa R, Jimenez L, et al. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget. 2015;6:34221–7.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tougeron D, Fauquembergue E, Rouquette A, et al. Tumor-infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frameshift mutations. Mod Pathol. 2009;22:1186–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.PubMedCrossRefGoogle Scholar
  85. 85.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.PubMedCrossRefGoogle Scholar
  87. 87.
    Le DT, Yoshino T, Jäger D, Andre T, Bendell JC, Wang R, et al. KEYNOTE-164: Phase II study of pembrolizumab (MK-3475) for patients with previously treated, microsatellite instability-high advanced colorectal carcinoma. J. Clin. Oncol. 34, (suppl 4S; abstr TPS787) (2016).Google Scholar
  88. 88.
    Diaz LA, Le DT, Yoshino T, Andre T, Bendell JC, Zhang Y, et al. KEYNOTE-177: First-line, open-label, randomized, phase III study of pembrolizumab (MK-3475) versus investigator-choice chemotherapy for mismatch repair deficient or microsatellite instability-high metastatic colorectal carcinoma. J. Clin. Oncol. 34, (suppl 4S; abstr TPS789) (2016).Google Scholar
  89. 89.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Yamamoto H, Adachi Y, Taniguchi H, et al. Interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J Gastroenterol. 2012;18:2745–55.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vilar E, Bartnik CM, Stenzel SL, et al. MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res. 2011;71:2632–42.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Tahara M, Inoue T, Sato F, et al. The use of Olaparib (AZD2281) potentiates SN-38 cytotoxicity in colon cancer cells by indirect inhibition of Rad51-mediated repair of DNA double-strand breaks. Mol Cancer Ther. 2014;13:1170–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Leichman L, Groshen S, O’Neil BH, et al. Phase II study of olaparib (AZD-2281) after standard systemic therapies for disseminated colorectal cancer. Oncologist. 2016;21:172–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sinicrope FA, Mahoney MR, Smyrk TC, et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol. 2013;31:3664–72.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tougeron D, Mouillet G, Trouilloud I, et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: a large multicenter AGEO study. J Natl Cancer Inst. 2016;108:djv438.PubMedCrossRefGoogle Scholar
  99. 99.
    Aebi S, Kurdi-Haidar B, Gordon R, et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 1996;56:3087–90.PubMedGoogle Scholar
  100. 100.
    Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Velho S, Fernandes MS, Leite M, Figueiredo C, Seruca R. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J Gastroenterol. 2014;20:16433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    V S, Bhagat R, C S P, V R P, Krishnamoorthy L. Microsatellite instability, promoter methylation and protein expression of the DNA mismatch repair genes in epithelial ovarian cancer. Genomics. 2014;104:257–63.Google Scholar
  103. 103.
    Baldinu P, Cossu A, Manca A, et al. Microsatellite instability and mutation analysis of candidate genes in unselected sardinian patients with endometrial carcinoma. Cancer. 2002;94:3157–68.PubMedCrossRefGoogle Scholar
  104. 104.
    Grindedal EM, Møller P, Eeles R, et al. Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:2460–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Dong X, Li Y, Chang P, Hess KR, Abbruzzese JL, Li D. DNA mismatch repair network gene polymorphism as a susceptibility factor for pancreatic cancer. Mol Carcinog. 2012;51:491–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dionisia Quiroga
    • 1
  • H. Kim Lyerly
    • 2
    • 3
  • Michael A. Morse
    • 2
    • 4
    Email author
  1. 1.College of Osteopathic MedicineMichigan State UniversityEast LansingUSA
  2. 2.Duke Cancer InstituteDurhamUSA
  3. 3.Department of SurgeryDuke University Medical CenterDurhamUSA
  4. 4.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations